Plasma-chemical modification of polyethylene surface for copolymerization with diallyldimethylammonium chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the composition of the surface layer of polyethylene film after treatment in the positive column of glow discharge of direct current in the flow of oxygen and argon have been studied. The possibility of copolymerization of diallyldimethylammonium chloride monomer and polyethylene surface modified in plasma is shown.

Full Text

Restricted Access

About the authors

S. A. Smirnov

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: sas@isuct.ru
Russian Federation, Ivanovo

T. G. Shikova

Ivanovo State University of Chemistry and Technology

Email: sas@isuct.ru
Russian Federation, Ivanovo

I. V. Kholodkov

Ivanovo State University of Chemistry and Technology

Email: sas@isuct.ru
Russian Federation, Ivanovo

A. A. Maltsev

N.M. Emanuel Institute of Biochemical Physics RAS

Email: sas@isuct.ru
Russian Federation, Ivanovo

V. M. Misin

N.M. Emanuel Institute of Biochemical Physics RAS

Email: sas@isuct.ru
Russian Federation, Ivanovo

References

  1. Kutepov A.M. Vacuum-plasma and plasma-solution modification of polymer materials // A.M. Kutepov, A.G. Zakharov, A.I. Maksimov. M.: Nauka, 2004. 496 p.
  2. Syrtsova D.A., Zinoviev A.V., Piskarev M.S., Skryleva E.A., Gatin A.K., Gilman A.B., Gaidar A.I., Kuznetsov A.A., Teplyakov V.V. Effects of low-temperature plasma on the structure of surface layers and gas separation properties of polyvinyltrimethylsilane membranes // Membranes and Membrane Technologies. 2023. V. 13. № 2. P. 117–127. https://doi.org/10.31857/S2218117223020062
  3. Gilman A.B., Piskarev M.S., Kuznetsov A.A. Modification of polyethylene terephthalate in low-temperature plasma for use in medicine and biology // High Energy Chemistry. 2021. V. 55. № 2. P. 117–127. https://doi.org/10.31857/S0023119321020066
  4. Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release // Surface and Coatings Technology. 2013. V. 233. P. 99–107. https://doi.org/10.1016/j.surfcoat.2013.02.042
  5. Mária Domonkos, Petra Tichá, Jan Trejbal, Pavel Demo. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry // Appl. Sci. Sci. 2021. V. 11. P. 4809. https://doi.org/10.3390/app11114809
  6. Hom Bahadur Baniya, Rajesh Prakash Guragain, Deepak Prasad Subedi. Cold Atmospheric Pressure Plasma Technology for Modifying Polymers to Enhance Adhesion: A Critical Review // Rev. Adhesion Adhesives. 2021. V. 9. № 2. P. 269–307. https://doi.org/10.1002/9781119846703.ch19
  7. Chudinov V.S., Kondyurina I.V., Terpugov V.N., Shardakov I.N., Maslova V.V., Solodnikov S.Yu. et al. Plasma Ion Treatment of Polyurethane Implants for Reducing the Foreign Body Rejection Rate // Biomedical Engineering. 2020. V. 54. № 4. P. 255–257. https://doi.org/10.1007/s10527-020-10016-4
  8. Chi Yang, Xue-Mei Li, Jack Gilron, Ding-feng Kong, Yong Yin, Yoram Oren et al. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation // Journal of Membrane Science. 2014. V. 456. P. 155–161. https://doi.org/10.1016/j.memsci.2014.01.013
  9. Jelena Peran, Sanja Ercegović Ražić. Application of atmospheric pressure plasma technology for textile surface modification // Textile Research Journal. 2020. V. 90. Issue 9-10. P. 1174–1197. https://doi.org/10.1177/0040517519883954
  10. Alessio Montarsolo, Monica Periolatto, Marco Zerbola, Raffaella Mossotti, Franco Ferrero. Hydrophobic sol-gel finishing for textiles: Improvement by plasma pre-treatment // Textile Research Journal. 2013. V. 83. Iss. 11. P. 1190–1200. https://doi.org/10.1177/0040517512468823
  11. Kadnikov D.V., Ovtsyn A.A., Shibaev S.A., Smirnov S.A. Feedback in Non-Equilibrium Oxidative Plasma Reacting with the Polyethylene // Plasma Physics and Technology. 2017. V. 4. № 1. P. 104–107. https://doi.org/10.14311/ppt.2017.1.104
  12. Kuvaldina E.V., Shikova T.G., Smirnov S.A., Rybkin V.V. Surface oxidation and destruction of polyethylene in plasma of argon-oxygen mixture // High Energy Chemistry. 2007. V. 41. № 4. P. 284–287. https://doi.org/10.1134/S001814390707040121
  13. Titov V.A., Smirnov S.A., Rybkin V.V. Physicochemical processes in the system non-equilibrium plasma – polymer // High Energy Chemistry. 2009. V. 43. № 3. P. 218–226. https://doi.org/10.1134/S0018143909030047

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. IR spectrum of PE films: (a) after plasma treatment; 1 – original sample; 2 – sample treated in oxygen plasma; 3 – sample treated in argon plasma. Plasma treatment conditions: pressure 100 Pa, discharge current 80 mA, treatment time 300 s. (b) after mDDA grafting; 1 – sample treated in argon plasma at a discharge current of 80 mA, after holding in mDDA solution for 1 h; 2 – this sample after holding in distilled water (1 h); 3 – this sample after “active” rinsing in water.

Download (349KB)
3. Fig. 2. AFM images of polyethylene films: (a) original sample; (b) treated in oxygen plasma; (c) treated in argon plasma. Discharge current 80 mA, gas pressure 100 Pa.

Download (483KB)
4. Fig. 3. Photograph of water droplets and mDDA solution on the surface of PE film: (a) water droplet on the original sample; (b) water droplet on the sample treated in oxygen plasma at a current of 50 mA; (c) monomer solution droplet on the sample treated in oxygen plasma at a current of 50 mA; (d) water droplet on the sample treated in oxygen plasma after grafting and active washing of the monomer.

Download (623KB)
5. Fig. 4. AFM images of PE film in phase contrast: (a) after treatment in argon plasma at a discharge current of 80 mA and a pressure of 100 Pa; (b) after treatment in argon plasma, grafting and active washing of the monomer.

Download (950KB)

Copyright (c) 2024 Russian Academy of Sciences