Динамика филаментации СВЧ-разряда в азоте при высоком давлении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе в рамках численных расчетов представлена динамика филаментации импульсного СВЧ-разряда в азоте, генерируемого в пучности стоячей электромагнитной волны при давлении 100 Торр. Представлены результаты динамики основных параметров плазмы: концентрации заряженных и возбужденных частиц, температуры газа, колебательной температуры азота.

Полный текст

Доступ закрыт

Об авторах

А. А. Сайфутдинова

КНИТУ-КАИ им. А.Н. Туполева

Автор, ответственный за переписку.
Email: aliya_2007@list.ru
Россия, 420111, Казань, ул. Карла Маркса, 10

А. Р. Мардеев

КНИТУ-КАИ им. А.Н. Туполева

Email: aliya_2007@list.ru
Россия, 420111, Казань, ул. Карла Маркса, 10

А. А. Галиев

КНИТУ-КАИ им. А.Н. Туполева

Email: aliya_2007@list.ru
Россия, 420111, Казань, ул. Карла Маркса, 10

Н. П. Германов

КНИТУ-КАИ им. А.Н. Туполева

Email: aliya_2007@list.ru
Россия, 420111, Казань, ул. Карла Маркса, 10

А. И. Сайфутдинов

КНИТУ-КАИ им. А.Н. Туполева

Email: as.uav@bk.ru
Россия, 420111, Казань, ул. Карла Маркса, 10

Список литературы

  1. Lebedev Y.A., Averin K.A., Borisov R.S. et al. // High Energy Chem, 2018. V. 52. № 324. P. 324–329.
  2. Averin K.A., Lebedev Yu.A., Tatarinov A.V. // High Energy Chem, 2019. V. 53. V. 4. P. 331–335.
  3. Lebedev Yu.A. // High Temperature. 2018. V. 56. № 5. P. 811–820.
  4. Tsyganov D., Bundaleska N., Tatarova E., Dias A., Henriques J., Rego A., Ferraria A., Abrashev M.V., Dias F.M., Luhrs C.C., Phillips J. // Plasma Sources Science and Technology. 2015. V. 25. № 015013. P. 1–22.
  5. Napalkov O.G., Saifutdinov A.I., Saifutdinova A.A., Timerkaev B.A. // High Energy Chemistry. 2021. V. 55. № 6. P. 525–530.
  6. Krčma F., Tsonev I., Smejkalová K., Truchlá D., Kozáková Z., Zhekova M., Marinova P., Bogdanov T., Benova E. // Journal of Physics D: Applied Physics. 2018. V. 51. № 41. P. 414001.
  7. Сhen Z., Xia G., Zou C., Li P., Hu Y., Ye Q., Eliseev S., Stepanova O., Saifutdinov A.I., Kudryavtsev A.A., Liu M. // Journal of Applied Physics. 2015. V. 118. P. 023307.
  8. Xia G., Chen Z., Saifutdinov A. I., Eliseev S., Hu Y., Kudryavtsev A.A. //IEEE Transactions on Plasma Science. 2014. V. 42. № 10. P. 2768–2769.
  9. Kang S.K., Kim H.Y., Yun G.S., Lee J.K. // Plasma Sources Science and Technology. 2015. V. 24. № 3. P. 035020 1–12.
  10. Todorova Y., Yotinov I., Topalova Ya., Benova E., Marinova P., Tsonev I., Bogdanov T. // Environmental technology. 2019. V. 40. № 28. P. 3783–3792.
  11. Vautz W., Michels A., Franzke J. // Analytical and bioanalytical chemistry. 2008. V. 391. P. 2609–2615.
  12. Dai J., Zhao Zh., Liang G., Duan Y. A novel microwave-induced plasma ionization source for ion mobility spectrometry // Scientific reports. 2017. V. 7. № 1. P. 1–9.
  13. Fukunari M., Komurasaki K., Nakamura Y., Oda Y., Sakamoto K. // Journal of Energy and Power Engineering. 2017. V. 11. № 6. P. 363–371.
  14. Diamant K.D., Zeigler B.L., Cohen R.B. // Journal of propulsion and power. 2007. V. 23. № 1. P. 27–34.
  15. Knight D. // Aerospace Lab. 2015. № 10. P. AL10-02 1–12.
  16. Azarova O.A., Knight D.D. // Aerospace Science and Technology. 2015. V. 43. P. 343–349.
  17. Khodataev K.V. Microwave discharges and possible applications in aerospace technologies // Journal of Propulsion and Power. 2008. V. 24. № 5. P. 962–972.
  18. Shibkov V.M. Microwave Discharges and Their Application. I. Surface Microwave Discharge // Moscow University Physics Bulletin. 2019. V. 74. P. 421–437.
  19. Lashkov V.A., Karpenko A.G., Khoronzhuk R.S., Mashek I.Ch. // Physics of Plasmas. 2016. V. 23. № 5. P. 052305 1–6.
  20. Bonaventura Z., Trunec D., Meško M., Vašina P., Kudrle V. // Journal of Physics D: Applied Physics. 2007. V. 41. № 1. P.015210 1–9.
  21. Semenov V.E., Rakova E.I., Glyavin M.Yu., Nusinovich G.S. // Physics of Plasmas. 2016. V. 23. № 7. P. 073109 1–11.
  22. Zhao P., Guo L., Shu P. // Physics of Plasmas. 2016. V. 23. № 9. P. 092105 1–5.
  23. Yang W., Zhou Q., Dong Z. // Journal of Applied Physics. 2018. V. 123. № 1. P. 013301 1–9.
  24. Chaudhury B., Boeuf J.P., Zhu G.Q. // Physics of Plasmas. 2010. V. 17. № 12. P. 123505 1–11.
  25. Chaudhury B., Boeuf J.-P., Zhu G.-Q. Pascal O. // Journal of Applied Physics. 2011. V. 110. № 11. P. 113306 1–8.
  26. Kourtzanidis K., Boeuf J.P., Rogier F. // Physics of Plasmas. 2014. V. 21. № 12. P. 123513 1–8.
  27. Arcese E., Rogier F., Boeuf J.P. // Frontiers in Physics. 2019. V. 7. 26. P. 1–16.
  28. Kourtzanidis K., Rogier F., Boeuf J.P. // Journal of Applied Physics. 2015. V. 118. № 10. P. 103301 1–9.
  29. Saifutdinov A.I., Kustova E.V., Karpenko A.G., Lashkov V.A. // Plasma Physics Reports. 2019. V. 45. № 6. P. 602–609.
  30. Saifutdinov A.I., Kustova E.V. // Journal of Applied Physics. 2021. V. 129. № 2. 023301 1–15.
  31. Напалков О.Г., Кустова Е.В., Сайфутдинов А.И. // Физико-химическая кинетика в газовой динамике. 2023. Т. 24. вып. 5. С. 1–17.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Двумерная расчетная область, для описания динамики плазмоида в пучности стоячей электромагнитной волны.

Скачать (47KB)
3. Рис. 2. Пространственные распределения концентрации электронов (слева) и среднеквадратичного значения напряженности электрического поля (справа) в различные моменты времени.

Скачать (737KB)
4. Рис. 3. Пространственные распределения температуры газа (слева) и колебательной температуры азота (справа) в различные моменты времени.

Скачать (623KB)
5. Рис. 4. Пространственные распределения различных сортов ионов в момент времени t = 15 мкс.

Скачать (180KB)
6. Рис. 5. Пространственные распределения концентраций различных сортов возбужденных частиц в момент времени t = 15 мкс.

Скачать (287KB)
7. Рис. 6. Динамика изменения концентраций заряженных и возбужденных частиц в центре плазмоида в различные моменты времени.

Скачать (232KB)

© Российская академия наук, 2024