Direct One-Stage Plasma Chemical Synthesis of Nanostructured Thin Films of the System β-Ga2O3-GaN of Different Composition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, nanostructured thin films of the β-Ga2O3−GaN system were obtained by plasma chemical deposition from the gas phase (PECVD) on c-sapphire substrates. High-purity metallic gallium, as well as high-purity gaseous nitrogen and oxygen were used as sources of macro components. The low-temperature nonequilibrium plasma of an inductively coupled HF (40.68 MHz) discharge at a reduced pressure (0.01 Torr) was the initiator of chemical transformations between the starting substances. A mixture of oxygen and nitrogen was used as a plasma-forming gas. The plasma chemical process was studied using the optical emission spectroscopy (OES) method. The obtained thin films of the β-Ga2O3−GaN system with a GaN phase content of 2 to 7% were characterized by various analytical methods.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Mochalov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

M. Kudryashova

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

M. Vshivtsev

Lobachevsky Nizhny Novgorod State University

Хат алмасуға жауапты Автор.
Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

Yu. Kudryashov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

I. Prokhorov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

A. Knyazev

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Ресей, Nizhny Novgorod

A. Almaev

Focon LLC

Email: mvshivtcev@mail.ru
Ресей, Kaluga

N. Yakovlev

Focon LLC

Email: mvshivtcev@mail.ru
Ресей, Kaluga

E. Chernikov

Focon LLC

Email: mvshivtcev@mail.ru
Ресей, Kaluga

N. Erzakova

Focon LLC

Email: mvshivtcev@mail.ru
Ресей, Kaluga

Әдебиет тізімі

  1. Afzal A. // J. Materiomics. 2019. V. 5. № 4. P. 542.
  2. Jang S., Jung S., Kim J. et al. // ECS J Solid State Sci Technol. 2018. V. 7. № 7. P. 3180.
  3. Hoefer U., Frank J., Fleischer M. // Sens. Actuators B Chem. 2001. V. 78. № 1. P. 6.
  4. Lampe U., M. Fleischer M., Meixner H. // Sens. Actuators B Chem. 1994. V. 17. P. 187.
  5. Fleischer M., Hanrieder W., Meixner H. // Thin Solid Films. 1990. V. 190. P. 93.
  6. Liu Y., Parisi J., Sun X., Lei Y. // J. Mater. Chem. A. 2014. V. 2 P.9919.
  7. Ghosh A., Zhang C., Shi S.Q., Zhang H. // Clean – Soil, Air, Water. 2019. V. 47. P. 1800491.
  8. Fleischer M., Giber J., Meixner H. // Appl. Phys. 1992. V. 54. P. 560.
  9. Bartic M. // Phys Status Solidi. 2016. V. 213. P. 457.
  10. Liu Z., Yamazaki T., Shen Y. et al. // Sens Actuators B Chem. 2008. V. 129. P. 666.
  11. Pandeeswari R., Jeyaprakash B.G. // Sens Actuators B Chem. 2014. V. 195. P. 206.
  12. Li Y., Trinchi A., Wlodarski W. et al. // Sens Actuators B Chem. 2003. V. 93. P. 431.
  13. Mochalov L., Logunov A., Kudryashov M. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 073002.
  14. Mochalov L.A., Logunov A.A., Prokhorov I.O. // Journal of Physics: Conference Series. 2021. V. 1967. P. 012036.
  15. Zhang H., Deng J.X., Kong L. et al. // Micro & Nano Lett. 2019. V. 14. P. 62.
  16. Suzhen L., Linpeng D. Xiaofan M. J. // J. Alloys Compd. 2020. V. 812. P. 1520262.
  17. Liu L.L., Li M.K., Yu D.Q. // Appl. Phys. A. 2010. V. 98. P. 831.
  18. Sun R., Zhang H.-Y., Wang G.-G. et al. // Superlattices Microstruct. 2014. V. 65. P. 146.
  19. Zhang Y., Yan J., Li Q. et al. // Physica B. V. 406. P. 3079.
  20. Roehrens D. // J. Solid State Chem. 2010. V. 183. P. 532.
  21. Mochalov L.A., Logunov A.A., Kudryashov M.A. // Journal of Physics: Conference Series. 2021. V. 1967. P. 012037.
  22. Mochalov L., Logunov A., Gogova D. et al. // Opt Quantum Electron. 2020. V. 52. P. 510.
  23. Bagolini A., Gaiardo A., Crivellari M. et al. // Sens Actuator B Chem. 2019. V. 292. P. 225.
  24. Mochalov L., Logunov A., Vorotyntsev V. // Sep. Purif. Technol. 2021 V. 258. P. 118001.
  25. Mochalov L., Logunov A., Kitnis A. et al. // Sep. Purif. Technol. 2020. V. 238. P.116446.
  26. Logunov A., Mochalov L., Gogova D., Vorotyntsev V. // International Conference on Transparent Optical Networks. 2019. P. 8840331.
  27. Yanyan Z., Ray L. Frost. // J. Raman Spectrosc. 2008. V. 39. P. 1494.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of a plasma chemical plant for the synthesis of β-Ga2O3−GaN thin films

Жүктеу (259KB)
3. Fig. 2. The emission spectrum of the plasma of the Ga-H2-O2-N2 mixture at different nitrogen contents: a – 1%; b – 3%; c – 7%. The inset shows a section of the spectrum in the range of 280-1100 nm

Жүктеу (203KB)
4. Fig. 3. SEM images of gallium oxide samples doped with gallium nitride. The upper row of the scale is 1 micron, the lower row of the scale is 100 nm

Жүктеу (537KB)
5. Fig. 4. AFM image of a polycrystalline sample of gallium oxide doped with gallium nitride (β-Ga2O3−95%−GaN−5%)

Жүктеу (193KB)
6. Fig. 5. Raman spectra of gallium oxide films doped with GaN with different doping concentrations

Жүктеу (216KB)

© Russian Academy of Sciences, 2024