Expression of CD11a+ and CD309+ membrane lymphocyte clusters as biomarkers of the effect of combined exposure to benzo(a)pyrene and cold factor in experimental in vivo models

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Introduction. It is relevant to investigate expression of CD11a+ and CD309+ markers under combined exposure to benzo(a)pyrene and cold factor in an in vivo experiment in terms of modelling likely effects and verifying mechanisms of the developing of disorders of endothelial immune regulation caused by biological exposure to benzo(a)pyrene in northern areas.Materials and methods. An in vivo subchronic experiment was performed using forty eight nonlinear laboratory mice divided into 4 groups according to the conditions of factor loading (oral biological exposure to benzo(a)pyrene at an average daily dose of 0.175 mcg/kg∙day; exposure to cold, average daily air temperature 9.9±2.6 °C). The content of CD11a+ and CD309+ lymphocytes was determined by flow cytofluorometry.Results. The results of oral subchronic biological exposure to benzo(a)pyrene at a dose of 0,175 µg/kg×day under cold stress in an in vivo experiment made it possible to establish CD309+ lymphocytes overexpression against the background of CD11a+ cells decrease (OR=5.00–22.50; RR=2.63–4.20; p=0.001–0.042). An increase in CD309+ lymphocytes content by 62% relative to the control is mainly associated with biological exposure to benzo(a)pyrene (OR=11.25 (1.65-76.85); RR=2.86 (1.20–6.86); p=0.026) while a decrease in CD11a+ lymphocyte content is associated with cold stress (OR=11.00 (1.77–68.35); RR=3.50 (1.22–10.05), p=0.001). Combined exposure to benzo(a)pyrene and cold forms synergistic, more than additive effects in the cellular immune profile (OR=14.67–22.50; RR=3.15–4.20; p=0.001–0.042).Limitations. The limitations are related to quantitative parameters of the sample, limited choice of exposure factors, and the need for subsequent confirmation of obtained results. Conclusion. Thus, the imbalance of adaptive cellular immune profile identified in in vivo models (CD309+ activation, CD11a+ deficiency) reflects the launch of negative inflammatory and proliferative scenarios associated with cardiovascular diseases. This makes it possible to verify mechanisms of cold and chemical (benzo(a)pyrene) stress formation and recommend CD11a+ and CD309+ lymphocyte clusters to be used as biomarkers of the effect for biological exposure to benzo(a)pyrene in northern areas.Compliance with ethical standards. The study was conducted in compliance with the requirements of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (ETS No. 123) and the Local Ethics Committee of the Federal Research Center for Medical and Preventive Health Risk Management Technologies (The meeting protocol No. 2 dated January 17, 2022).Contribution: Dolgikh O.V. — study concept and design, editing the text; Nikonoshina N.A. — data collection and analysis, writing the text. All authors are responsible for the integrity of all parts of the manuscript and for the approval of its final version.Conflict of interest. The authors declare no conflict of interest.Acknowledgement. The study had no sponsorship.Received: February 17, 2024 / Revised: March 6, 2024 / Accepted: March 26, 2025 / Published: April 30, 2025

Sobre autores

Oleg Dolgikh

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: oleg@fcrisk.ru

Natalya Nikonoshina

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: nat08.11@yandex.ru

Bibliografia

  1. Guan S., Huang Y., Feng Z., Xu L., Jin Y., Lu J. The toxic effects of benzopyrene on activated mouse T cells in vitro. Immunopharmacol. Immunotoxicol. 2017; 39(3): 117–23. https://doi.org/10.1080/08923973.2017.1299173
  2. Abd El-Fattah E.E., Abdelhamid A.M. Benzopyrene immunogenetics and immune archetype reprogramming of lung. Toxicology. 2021; 463: 152994. https://doi.org/10.1016/j.tox.2021.152994
  3. Шур П.З., Хасанова А.А., Цинкер М.Ю., Зайцева Н.В. Методические подходы к оценке риска здоровью населения в условиях сочетанного воздействия климатических факторов и обусловленного ими химического загрязнения атмосферы. Анализ риска здоровью. 2023; (2): 58–68. https://doi.org/10.21668/health.risk/2023.2.05 https://elibrary.ru/ebqchy
  4. Литовченко О.Г., Гаджибекова Н.Г. Функциональные особенности кардиореспираторной системы пришлого населения, проживающего в районах Крайнего Севера и приравненных к ним местностях (обзор литературы). Российские биомедицинские исследования. 2023; 8(3): 36–49. https://doi.org/10.56871/RBR.2023.19.40.006
  5. Ganeshan K., Chawla A. Warming the mouse to model human diseases. Nat. Rev. Endocrinol. 2017; 13(8): 458–65. https://doi.org/10.1038/nrendo.2017.48
  6. Mohammadpour H., MacDonald C.R., Qiao G., Chen M., Dong B., Hylander B.L., et al. β2 adrenergic receptor–mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 2019; 129(12): 5537–52. https://doi.org/10.1172/JCI129502
  7. Bond L.M., Burhans M.S., Ntambi J.M. Uncoupling protein-1 deficiency promotes brown adipose tissue inflammation and ER stress. PloS One. 2018: 13(11): e0205726. https://doi.org/10.1371/journal.pone.0205726
  8. Szentirmai É., Kapás L. Sleep and body temperature in TNFalpha knockout mice: the effects of sleep deprivation, beta3-AR stimulation and exogenous TNFalpha. Brain Behav. Immun. 2019; 81: 260–71. https://doi.org/10.1016/j.bbi.2019.06.022
  9. Шаравьева И.Л., Гейн С.В. Влияние острого холодового стресса на секрецию IL-2, IL-4, IFNγ, IL-12 на секрецию спленоцитами мыши in vitro. Медицинская иммунология. 2022; 24(4): 843–8. https://doi.org/10.15789/1563-0625-IOA-2383 https://elibrary.ru/jnocjj
  10. Аликина И.Н., Долгих О.В. Особенности цитокинового профиля при его модификации техногенными факторами в условиях эксперимента in vitro (на примере бенз(а)пирена и вакцинного антигена SARS-CoV-2). Гигиена и санитария. 2023; 102(5): 421–5. https://doi.org/10.47470/0016-9900-2023-102-5-421-425 https://elibrary.ru/icmpiz
  11. Bouayed J., Bohn T., Tybl E., Kiemer A.K., Soulimani R. Benzopyrene-induced anti-depressive-like behaviour in adult female mice: role of monoaminergic systems. Basic Clin. Pharmacol. Toxicol. 2012; 110(6): 544–50. https://doi.org/10.1111/j.1742-7843.2011.00853.x
  12. Hou L., Yuki K. CD11a regulates hematopoietic stem and progenitor cells. Front. Immunol. 2023; 14: 1219953. https://doi.org/10.3389/fimmu.2023.1219953
  13. Guerrero-García J.J. The role of astrocytes in multiple sclerosis. Neurología. 2020; 35(6): 400–8. https://doi.org/10.1016/j.nrl.2017.07.021
  14. Fekadu J., Modlich U., Bader P., Bakhtiar S. Understanding the role of LFA-1 in leukocyte adhesion deficiency type I (LAD I): Moving towards Inflammation? Int. J. Mol. Sci. 2022; 23(7): 3578. https://doi.org/10.3390/ijms23073578
  15. Lei F., Tian Y., Miao J., Pan L., Tong R., Zhou Y. Immunotoxicity pathway and mechanism of benzopyrene on hemocytes of Chlamys farreri in vitro. Fish Shellfish Immunol. 2022; 124: 208–18. https://doi.org/10.1016/j.fsi.2022.04.009
  16. Wang L., Ge H., Peng L., Wang B. A meta-analysis of the relationship between VEGFR2 polymorphisms and atherosclerotic cardiovascular diseases. Clin. Cardiol. 2019; 42(10): 860–5. https://doi.org/10.1002/clc.23233
  17. Marques C.S., Brandão P., Burke A.J. Targeting vascular endothelial growth factor receptor 2 (VEGFR-2): Latest insights on synthetic strategies. Molecules. 2024; 29(22): 5341. https://doi.org/10.3390/molecules29225341
  18. Luck R., Urban S., Karakatsani A., Harde E., Sambandan S., Nicholson L., et al. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. Elife. 2019; 8: e49818. https://doi.org/10.7554/eLife.49818
  19. Wang X., Bove A.M., Simone G., Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 2020; 8: 599281. https://doi.org/10.3389/fcell.2020.599281
  20. Lugano R., Ramachandran M., Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020; 77(9): 1745–70. https://doi.org/10.1007/s00018-019-03351-7
  21. Prasad C.B., Singh D., Pandey L.K., Pradhan S., Singh S., Narayan G. VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail. Int. J. Biochem. Cell Biol. 2022; 142: 106122. https://doi.org/10.1016/j.biocel.2021.106122

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.