Influence of occupational risk factors on human aging (literature review)

Cover Page

Cite item

Full Text

Abstract

Nowadays over the world absolute and relative number of aging population dramatically increases with life expectancy up and birth rate down. Aging and senescence assessment are assumed to reflect current changes, internal degeneration and various stressors respond ability (i.e. genetic, environmental and occupational factors) of human organism. Occupational experience time is leading risk factor and indicator for accelerated aging. Last years, many reports concerning aging rate dependence on physical and chemical occupational hazardous factors were published. Summarizing this exposures and their effects on aging reviews are almost absent despite many provided studies. Overview of main occupational neuropsychiatric, physical and chemical risk factors, that causes human aging acceleration presented here. Circadian rhythm disorders, allostatic load, heat stress, local vibration, chemical effects and suspended nanoparticles (fine dust) influences on aging and such signs as Alzheimer’s disease risk increase, telomere length decrease and epigenetic changes and possible interactions between them are also briefly presented. Agricultural, industrial workers, teachers and police officers aging acceleration is detected in results of analysis of biological age markers.

Contribution:

Karimov D.D. — concept of the study, data collection and processing, writing text, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article;

Erdman V.V. — concept of the study, editing, approval of the final version of the article;

Kudoyarov E.R. — collection and processing of material, writing text;

Valova Ya.V., Smolyankin D.A. – collection and processing of material;

Repina E.F. — editing;

Karimov D.O. — editing, approval of the final version of the article. 

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: August 30, 2021 / Accepted: April 12, 2022 / Published: April 30, 2022

About the authors

Denis D. Karimov

Ufa Research Institute of Labor Medicine and Human Ecology; Institute of Biochemistry and Genetics — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: karriden@gmail.com
ORCID iD: 0000-0002-1962-2323

MD, PhD, researcher in department of toxicology and genetics of Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation.

e-mail: karriden@gmail.com

Russian Federation

Vera V. Erdman

Institute of Biochemistry and Genetics — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1219-3458
Russian Federation

Eldar R. Kudoyarov

Ufa Research Institute of Labor Medicine and Human Ecology

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2092-1021
Russian Federation

Yana V. Valova

Ufa Research Institute of Labor Medicine and Human Ecology

Email: noemail@neicon.ru
ORCID iD: 0000-0001-6605-9994
Russian Federation

Denis A. Smolyankin

Ufa Research Institute of Labor Medicine and Human Ecology

Email: noemail@neicon.ru
ORCID iD: 0000-0002-7957-2399
Russian Federation

Elvira F. Repina

Ufa Research Institute of Labor Medicine and Human Ecology

Email: noemail@neicon.ru
ORCID iD: 0000-0001-8798-0846
Russian Federation

Denis O. Karimov

Ufa Research Institute of Labor Medicine and Human Ecology

Email: noemail@neicon.ru
ORCID iD: 0000-0003-0039-6757
Russian Federation

References

  1. Bai X. Biomarkers of aging. In: Aging and Aging-Related Diseases. Singapore: Springer; 2018: 217–23.
  2. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217. https://doi.org/10.1016/j.cell.2013.05.039
  3. Descatha A., Roquelaure Y. Occupational health and valid work exposure tools are keys to improving the health of ageing workers. Occup. Environ. Med. 2018; 75(5): 398. https://doi.org/10.1136/oemed-2017-104673
  4. Popova A.Yu., Zaytseva N.V., Onishchenko G.G., Kleyn S.V., Glukhikh M.V., Kamaltdinov M.R. Sanitary-epidemiologic determinants and potential for growth in life expectancy of the population in the Russian Federation taking into account regional differentiation. Analiz riska zdorov’yu. 2020; (1): 4–16. https://doi.org/10.21668/health.risk/2020.1.01 (in Russian)
  5. Ilyushchenko V.G. Modern approaches to assessing biological age of person. Valeologiya. 2003; (3): 11–9. (in Russian)
  6. Domènech-Abella J., Perales J., Lara E., Moneta M.V., Izquierdo A., Rico-Uribe L.A., et al. Sociodemographic factors associated with changes in successful aging in Spain: A follow-up study. J. Aging Health. 2018; 30(8): 1244–62. https://doi.org/10.1177/0898264317714327
  7. Bashkireva A.S., Khurtsilava O.G., Khavinson V.Kh., Meltser A.V., Chernyakina T.S., Chernova G.I. The comparative analysis of professional accelerated ageing risk among those who work with occupational hazards. Profilakticheskaya i klinicheskaya meditsina. 2013; (4): 20–8. (in Russian)
  8. Sindi S., Kåreholt I., Solomon A., Hooshmand B., Soininen H., Kivipelto M. Midlife work-related stress is associated with late-life cognition. J. Neurol. 2017; 264(9): 1996–2002. https://doi.org/10.1007/s00415-017-8571-3
  9. Rouch I., Wild P., Ansiau D., Marquié J.C. Shiftwork experience, age and cognitive performance. Ergonomics. 2005; 48(10): 1282–93. https://doi.org/10.1080/00140130500241670
  10. McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 2007; 87(3): 873–904. https://doi.org/10.1152/physrev.00041.2006
  11. Morris J.C., Storandt M., Miller J.P., McKeel D.W., Price J.L., Rubin E.H., et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 2001; 58(3): 397–405.
  12. Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004; 256(3): 183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x
  13. Seidler A., Nienhaus A., Bernhardt T., Kauppinen T., Elo A.L., Frölich L. Psychosocial work factors and dementia. Occup. Environ. Med. 2004; 61(12): 962–71. https://doi.org/10.1136/oem.2003.012153
  14. Wang H.X., Wahlberg M., Karp A., Winblad B., Fratiglioni L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 2012; 8(2): 114–20. https://doi.org/10.1016/j.jalz.2011.03.001
  15. Babanov S.A., Baraeva R.A., Budash D.S. Lesions of cardiovascular system in the practice of a pathologist. Meditsinskiy al’manakh. 2016; (4): 106–11. (in Russian)
  16. Domínguez F., Fuster V., Fernández-Alvira J.M., Fernández-Friera L., López-Melgar B., Blanco-Rojo R., et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 2019; 73(2): 134–44. https://doi.org/10.1016/j.jacc.2018.10.060
  17. Irwin M.R., Olmstead R., Carroll J.E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry. 2016; 80(1): 40–52. https://doi.org/10.1016/j.biopsych.2015.05.014
  18. Irie M., Asami S., Nagata S., Miyata M., Kasai H. Relationships between perceived workload, stress and oxidative DNA damage. Int. Arch. Occup. Environ. Health. 2001; 74(2): 153–7. https://doi.org/10.1007/s004200000209
  19. Alzoubi K.H., Khabour O.F., Rashid B.A., Damaj I.M., Salah H.A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav. Brain. Res. 2012; 226(1): 205–10. https://doi.org/10.1016/j.bbr.2011.09.017
  20. Zhang Z., Chen L., Xing X., Li D., Gao C., He Z., et al. Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicol. Res. 2016; 5(4): 1193–201. https://doi.org/10.1039/c6tx00112b
  21. Choi J., Fauce S.R., Effros R.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2008; 22(4): 600–5. https://doi.org/10.1016/j.bbi.2007.12.004
  22. Zhang X., Wang Y., Zhao R., Hu X., Zhang B., Lv X., et al. Folic acid supplementation suppresses sleep deprivation-induced telomere dysfunction and senescence-associated secretory phenotype (SASP). Oxid. Med. Cell. Longev. 2019; 2019: 4569614. https://doi.org/10.1155/2019/4569614
  23. Litvinova N.A., Kazin E.M., Berezina M.G., Prokhorova A.M., Brozdovskaya E.V., Suvorova L.I. Pre-nosological diagnostics in assessing the health status of teachers. Valeologiya. 2003; (3): 7–11. (in Russian)
  24. Abramovich S.G., Bush M.P., Korovina E.O. The biological age in military men of law-enforcement organs. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2008; 80(5): 27–30. (in Russian)
  25. Wu Y., Masurat F., Preis J., Bringmann H. Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Curr. Biol. 2018; 28(22): 3610–24. https://doi.org/10.1016/j.cub.2018.10.009
  26. Andel R., Crowe M., Hahn E.A., Mortimer J.A., Pedersen N.L., Fratiglioni L., et al. Work‐related stress may increase the risk of vascular dementia. J. Am. Geriatr. Soc. 2012; 60(1): 60–7. https://doi.org/10.1111/j.1532-5415.2011.03777.x
  27. Pavanello S., Stendardo M., Mastrangelo G., Casillo V., Nardini M., Mutti A., et al. Higher number of night shifts associates with good perception of work capacity and optimal lung function but correlates with increased oxidative damage and telomere attrition. Biomed Res. Int. 2019; 2019: 8327629. https://doi.org/10.1155/2019/8327629
  28. Gimaeva Z.F., Karimova L.K., Bakirov A.B., Kaptsov V.A., Kalimullina D.Kh. Risks of cardiovascular diseases evolvement and occupational stress. Analiz riska zdorov’yu. 2017; (1): 106–15. https://doi.org/10.21668/health.risk/2017.1.12 (in Russian)
  29. Agbenyikey W., Karasek R., Cifuentes M., Wolf P.A., Seshadri S., Taylor J.A., et al. Job strain and cognitive decline: a prospective study of the Framingham offspring cohort. Int. J. Occup. Environ. Med. 2015; 6(2): 79–94. https://doi.org/10.15171/ijoem.2015.534
  30. Andel R., Crowe M., Pedersen N.L., Mortimer J., Crimmins E., Johansson B., et al. Complexity of work and risk of Alzheimer’s disease: a population-based study of Swedish twins. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2005; 60(5): P251–8. https://doi.org/10.1093/geronb/60.5.p251
  31. Karp A., Andel R., Parker M.G., Wang H.X., Winblad B., Fratiglioni L. Mentally stimulating activities at work during midlife and dementia risk after age 75: follow-up study from the Kungsholmen Project. Am. J. Geriatr. Psychiatry. 2009; 17(3): 227–36. https://doi.org/10.1097/jgp.0b013e318190b691
  32. Then F.S., Luck T., Luppa M., Thinschmidt M., Deckert S., Nieuwenhuijsen K., et al. Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occup. Environ. Med. 2014; 71(5): 358–65. https://doi.org/10.1136/oemed-2013-101760
  33. Crowe M., Andel R., Pedersen N.L., Gatz M. Do work-related stress and reactivity to stress predict dementia more than 30 years later? Alzheimer Dis. Assoc. Disord. 2007; 21(3): 205–9. https://doi.org/10.1097/wad.0b013e31811ec10a
  34. Stein-Behrens B.A., Sapolsky R.M. Stress, glucocorticoids, and aging. Aging (Milano). 1992; 4(3): 197–210. https://doi.org/10.1007/bf03324092
  35. Lupien S.J., de Leon M., De Santi S., Convit A., Tarshish C., Nair N.P., et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1998; 1(1): 69–73. https://doi.org/10.1038/271
  36. Roenneberg T., Merrow M. The circadian clock and human health. Curr. Biol. 2016; 26(10): 432–43. https://doi.org/10.1016/j.cub.2016.04.011
  37. Ulhôa M.A., Marqueze E.C., Kantermann T., Skene D., Moreno C. When does stress end? Evidence of a prolonged stress reaction in shiftworking truck drivers. Chronobiol. Int. 2011; 28(9): 810–8. https://doi.org/10.3109/07420528.2011.613136
  38. Richter T., von Zglinicki T. A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp. Gerontol. 2007; 42(11): 1039–42. https://doi.org/10.1016/j.exger.2007.08.005
  39. Houben J.M.J., Moonen H.J., van Schooten F.J., Hageman G.J. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic. Biol. Med. 2008; 44(3): 235–46. https://doi.org/10.1016/j.freeradbiomed.2007.10.001
  40. Kirschbaum C., Hellhammer D.H. Noise and stress-salivary cortisol as a non-invasive measure of allostatic load. Noise Health. 1999; 1(4): 57–65.
  41. Babisch W., Kröller-Schön S., Daiber A., Münzel T. Cardiovascular effects of noise. Noise Health. 2011; 13(52): 201–4. https://doi.org/10.4103/1463-1741.80148
  42. Matoba T. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review. Ind. Health. 2015; 53(6): 522–32. https://doi.org/10.2486/indhealth.2015-0040
  43. Dotsenko O.I. Activity of the glutathione system in the blood of mice under vibration stress. ScienceRise. 2015; 11(6): 39–46. https://doi.org/10.15587/2313-8416.2015.54809 (in Russian)
  44. Kia K., Fitch S.M., Newsom S.A., Kim J.H. Effect of whole-body vibration exposures on physiological stresses: mining heavy equipment applications. Appl. Ergon. 2020; 85: 103065. https://doi.org/10.1016/j.apergo.2020.103065
  45. Pichugina N.N., Eliseev Yu.Yu. Evaluation of occupational risk for health in multi-factor intensive influence. Saratovskiy nauchno-meditsinskiy zhurnal. 2011; 7(2): 347–50. (in Russian)
  46. Kharitonov V.I. Assessment of occupational health risk under multifactorial intensive exposure. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2017; 25(4): 575–85. https://doi.org/10.23888/PAVLOVJ20174575-585 (in Russian)
  47. Lie A., Skogstad M., Johannessen H.A., Tynes T., Mehlum I.S., Nordby K.C., et al. Occupational noise exposure and hearing: a systematic review. Int. Arch. Occup. Environ. Health. 2016; 89(3): 351–72. https://doi.org/10.1007/s00420-015-1083-5
  48. Denisov E.I. Noise at a workplace: permissible noise levels, risk assessment and hearing loss prediction. Analiz riska zdorov’yu. 2018; (3): 13–23. https://doi.org/10.21668/health.risk/2018.3.02 (in Russian)
  49. Wang D., Zhou M., Li W., Kong W., Wang Z., Guo Y., et al. Occupational noise exposure and hypertension: the Dongfeng-Tongji Cohort Study. J. Am. Soc. Hypertens. 2018; 12(2): 71–9. https://doi.org/10.1016/j.jash.2017.11.001
  50. Chen S., Ni Y., Zhang L., Kong L., Lu L., Yang Z., et al. Noise exposure in occupational setting associated with elevated blood pressure in China. BMC Pub. Health. 2017; 17(1): 1–7. https://doi.org/10.1186/s12889-017-4050-0
  51. Kuang D., Yu Y.Y., Tu C. Bilateral high-frequency hearing loss is associated with elevated blood pressure and increased hypertension risk in occupational noise exposed workers. PloS One. 2019; 14(9): e0222135. https://doi.org/10.1371/journal.pone.0222135
  52. Nserat S., Al-Musa A., Khader Y.S., Slaih A.A., Iblan I. Blood pressure of Jordanian workers chronically exposed to noise in industrial plants. Int. J. Occup. Environ. Med. 2017; 8(4): 217. https://doi.org/10.15171/ijoem.2017.1134
  53. Stokholm Z.A., Bonde J.P., Christensen K.L., Hansen Å.M., Kolstad H.A. Occupational noise exposure and the risk of stroke. Stroke. 2013; 44(11): 3214–6. https://doi.org/10.1161/strokeaha.113.002798
  54. Stokholm Z.A., Bonde J.P., Christensen K.L., Hansen Å.M., Kolstad H.A. Occupational noise exposure and the risk of hypertension. Epidemiology. 2013; 24(1): 135–42. https://doi.org/10.1097/ede.0b013e31826b7f76
  55. Gan W.Q., Mannino D.M. Occupational noise exposure, bilateral high-frequency hearing loss, and blood pressure. J. Occup. Environ. Med. 2018; 60(5): 462–8. https://doi.org/10.1097/jom.0000000000001232
  56. Basner M., Babisch W., Davis A., Brink M., Clark C., Janssen S., et al. Auditory and non-auditory effects of noise on health. Lancet. 2014; 383(9925): 1325–32. https://doi.org/10.1016/s0140-6736(13)61613-x
  57. Vagapova D.M. Cognitive impairment among agricultural workers of the republic of Bashkortostan. Meditsina truda i ekologiya cheloveka. 2019; (3): 40–4. https://doi.org/10.24411/2411-3794-2019-10035 (in Russian)
  58. Jensen A., Jepsen J.R. Vibration on board and health effects. Int. Marit. Health. 2014; 65(2): 58–60. https://doi.org/10.5603/imh.2014.0013
  59. Kosarev V.V., Babanov S.A., Vorob’eva E.V. Definition of rate of biological aging at vibration disease. Uspekhi gerontologii. 2011; 24(2): 300–2. (in Russian)
  60. Hernández L., Terradas M., Camps J., Martín M., Tusell L., Genescà A. Aging and radiation: bad companions. Aging Cell. 2015; 14(2): 153–61. https://doi.org/10.1111/acel.12306
  61. Bashkireva A.S., Konovalov S.S. Prevention of Accelerated Aging of Workers in Hazardous Working Conditions [Profilaktika uskorennogo stareniya rabotayushchikh vo vrednykh proizvodstvennykh usloviyakh]. St. Petersburg: praym-EVROZNAK; 2004. (in Russian)
  62. Pavanello S., Pesatori A.C., Dioni L., Hoxha M., Bollati V., Siwinska E., et al. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis. 2010; 31(2): 216–21. https://doi.org/10.1093/carcin/bgp278
  63. Li H., Jönsson B.A., Lindh C.H., Albin M., Broberg K. N-nitrosamines are associated with shorter telomere length. Scand. J. Work. Environ. Health. 2011; 37(4): 316–24. https://doi.org/10.5271/sjweh.3150
  64. Wong J.Y.Y., De Vivo I., Lin X., Christiani D.C. Cumulative PM2.5 exposure and telomere length in workers exposed to welding fumes. J. Toxicol. Environ. Health A. 2014; 77(8): 441–55. https://doi.org/10.1080/15287394.2013.875497
  65. Ziegler S., Schettgen T., Beier F., Wilop S., Quinete N., Esser A., et al. Accelerated telomere shortening in peripheral blood lymphocytes after occupational polychlorinated biphenyls exposure. Arch. Toxicol. 2017; 91(1): 289–300. https://doi.org/10.1007/s00204-016-1725-8
  66. Yuan J., Liu Y., Wang J., Zhao Y., Li K., Jing Y., et al. Long-term persistent organic pollutants exposure induced telomere dysfunction and senescence-associated secretory phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2018; 73(8): 1027–35. https://doi.org/10.1093/gerona/gly002
  67. Huat T.J., Camats-Perna J., Newcombe E.A., Valmas N., Kitazawa M., Medeiros R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 2019; 431(9) 1843–68. https://doi.org/10.1016/j.jmb.2019.01.018
  68. Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956; 3(11): 298–300. https://doi.org/10.1093/geronj/11.3.298
  69. Orgel L.E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA. 1963; 49(4): 517. https://doi.org/10.1073/pnas.49.4.517
  70. Liochev S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 2013; 60: 1–4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011
  71. Leonard S.S., Bower J.J., Shi X. Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol. Cell. Biochem. 2004; 255(1–2): 3–10. https://doi.org/10.1023/b:mcbi.0000007255.72746.a6
  72. Hou L., Hou L., Wang S., Dou C., Zhang X., Yu Y., et al. Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: a repeated-measure study. Environ. Int. 2012; 48: 71–7. https://doi.org/10.1016/j.envint.2012.06.020
  73. Dodig S., Čepelak I., Pavić I. Hallmarks of senescence and aging. Biochem. Med. 2019; 29(3): 483–97. https://doi.org/10.11613/bm.2019.030501
  74. Freund A., Orjalo A.V., Desprez P.Y., Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends. Mol. Med. 2010; 16(5): 238–46. https://doi.org/10.1016/j.molmed.2010.03.003
  75. Martin G.M. Interactions of aging and environmental agents: the gerontological perspective. Prog. Clin. Biol. Res. 1987; 228: 25–80.
  76. Wu Y., Liu Y., Ni N., Bao B., Zhang C., Lu L. High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup. Environ. Med. 2012; 69(8): 557–63. https://doi.org/10.1136/oemed-2011-100478
  77. Li H., Hedmer M., Wojdacz T., Hossain M.B., Lindh C.H., Tinnerberg H., et al. Oxidative stress, telomere shortening, and DNA methylation in relation to low‐to‐moderate occupational exposure to welding fumes. Environ. Mol. Mutagen. 2015; 56(8): 684–93. https://doi.org/10.1002/em.21958
  78. Pawlas N. Płachetka A., Kozłowska A., Mikołajczyk A., Kasperczyk A., Dobrakowski M., et al. Telomere length, telomerase expression, and oxidative stress in lead smelters. Toxicol. Ind. Health. 2016; 32(12): 1961–70. https://doi.org/10.1177/0748233715601758
  79. Bin P., Leng S.G., Cheng J., Pan Z.F., Duan H.W., Dai Y.F., et al. Association between telomere length and occupational polycyclic aromatic hydrocarbons exposure. Zhonghua Yu Fang Yi Xue Za Zhi. 2010; 44(6): 535–8. (in Chinese)
  80. Duan X., Zhang D., Wang S., Feng X., Wang T., Wang P., et al. Effects of polycyclic aromatic hydrocarbon exposure and miRNA variations on peripheral blood leukocyte DNA telomere length: A cross-sectional study in Henan Province, China. Sci. Total. Environ. 2020; 703: 135600. https://doi.org/10.1016/j.scitotenv.2019.135600
  81. Timasheva G.V., Akhmetshina V.T., Repina E.F., Khafizov A.S. Assessment of the biological age of workers engaged in hazardous working conditions. Meditsina truda i ekologiya cheloveka. 2017; (4): 53–8. (in Russian)
  82. Andreotti G., Hoppin J.A., Hou L., Koutros S., Gadalla S.M., Savage S.A., et al. Pesticide use and relative leukocyte telomere length in the agricultural health study. PLoS One. 2015; 10(7): e0133382. https://doi.org/10.1371/journal.pone.0133382
  83. Hou L., Andreotti G., Baccarelli A.A., Savage S., Hoppin J.A., Sandler D.P., et al. Lifetime pesticide use and telomere shortening among male pesticide applicators in the agricultural health study. Environ. Health Perspect. 2013; 121(8): 919–24. https://doi.org/10.1289/ehp.1206432
  84. Hoxha M., Dioni L., Bonzini M., Pesatori A.C., Fustinoni S., Cavallo D., et al. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ. Health. 2009; 8(1): 41. https://doi.org/10.1186/1476-069x-8-41
  85. Ma Y., Bellini N., Scholten R.H., Andersen M.H.G., Vogel U., Saber A.T., et al. Effect of combustion-derived particles on genotoxicity and telomere length: A study on human cells and exposed populations. Toxicol. Lett. 2020; 322: 20–31. https://doi.org/10.1016/j.toxlet.2020.01.002
  86. He X., Jing Y., Wang J., Li K., Yang Q., Zhao Y., et al. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations. Environ. Res. 2015; 137: 458–66. https://doi.org/10.1016/j.envres.2014.11.018
  87. Liu Q., Cao J., Li K.Q., Miao X.H., Li G., Fan F.Y., et al. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste. Environ. Sci. Pollut. Res. Int. 2009; 16(3): 329–38. https://doi.org/10.1007/s11356-008-0087-z
  88. Bassig B.A., Zhang L., Cawthon R.M., Smith M.T., Yin S., Li G., et al. Alterations in leukocyte telomere length in workers occupationally exposed to benzene. Environ. Mol. Mutagen. 2014; 55(8): 673–8. https://doi.org/10.1002/em.21880
  89. Zheng Y., Sanchez-Guerra M., Zhang Z., Joyce B.T., Zhong J., Kresovich J.K., et al. Traffic-derived particulate matter exposure and histone H3 modification: A repeated measures study. Environ. Res. 2017; 153: 112–9. https://doi.org/10.1016/j.envres.2016.11.015
  90. Dioni L., Hoxha M., Nordio F., Bonzini M., Tarantini L., Albetti B., et al. Effects of short-term exposure to inhalable particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. Environ. Health Perspect. 2011; 119(5): 622–7. https://doi.org/10.1289/ehp.1002486
  91. Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004; 109(21): 2655–71. https://doi.org/10.1161/01.cir.0000128587.30041.c8
  92. Weng N.P., Levine B.L., June C.H., Hodes R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. PNAS. 1995; 92(24): 11091–4. https://doi.org/10.1073/pnas.92.24.11091
  93. Weng N. Telomere and adaptive immunity. Mech. Ageing Dev. 2008; 129(1–2): 60–6. https://doi.org/10.1016/j.mad.2007.11.005
  94. Ng C.Y., Amini F. Telomere length alterations in occupational toxicants exposure: an integrated review of the literature. Exp. Health. 2020; 13: 119–31. https://doi.org/10.1007/s12403-020-00367-4
  95. Ghosh M., Janssen L., Martens D.S., Öner D., Vlaanderen J., Pronk A., et al. Increased telomere length and mtDNA copy number induced by multi-walled carbon nanotube exposure in the workplace. J. Hazard Mater. 2020; 394: 122569. https://doi.org/10.1016/j.jhazmat.2020.122569
  96. Gaikwad A.S., Mahmood R., Ravichandran B., Kondhalkar S. Evaluation of telomere length and genotoxicity among asphalt associated workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020; 858: 503255. https://doi.org/10.1016/j.mrgentox.2020.503255
  97. Guo X., Feng L., Lemos B., Lou J. DNA methylation modifications induced by hexavalent chromium. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 2019; 37(3): 133–45. https://doi.org/10.1080/10590501.2019.1592640
  98. Takiguchi M., Achanzar W.E., Qu W., Li G., Waalkes M.P. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell. Res. 2003; 286(2): 355–65. https://doi.org/10.1016/s0014-4827(03)00062-4
  99. Benbrahim-Tallaa L., Waterland R.A., Dill A.L., Webber M.M., Waalkes M.P. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ. Health Perspect. 2007; 115(10): 1454–9. https://doi.org/10.1289/ehp.10207
  100. Lin S., Huo X., Zhang Q., Fan X., Du L., Xu X., et al. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS One. 2013; 8(4): e60815. https://doi.org/10.1371/journal.pone.0060815
  101. Reichard J.F., Puga A. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010; 2(1): 87–104. https://doi.org/10.2217/epi.09.45
  102. Kwiatkowska M., Reszka E., Woźniak K., Jabłońska E., Michałowicz J., Bukowska B. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 2017; 105: 93–8. https://doi.org/10.1016/j.fct.2017.03.051
  103. Ock J., Kim J., Choi Y.H. Organophosphate insecticide exposure and telomere length in US adults. Sci. Total. Environ. 2020; 709: 135990. https://doi.org/10.1016/j.scitotenv.2019.135990
  104. Kahl V.F., Simon D., Salvador M., Branco Cdos S., Dias J.F., da Silva F.R., et al. Telomere measurement in individuals occupationally exposed to pesticide mixtures in tobacco fields. Environ. Mol. Mutagen. 2016; 57(1): 74–84. https://doi.org/10.1002/em.21984
  105. Kahl V.F.S., Dhillon V., Fenech M., de Souza M.R., da Silva F.N., Marroni N.A.P., et al. Occupational exposure to pesticides in tobacco fields: the integrated evaluation of nutritional intake and susceptibility on genomic and epigenetic instability. Oxid. Med. Cell. Longev. 2018; 2018: 7017423. https://doi.org/10.1155/2018/7017423
  106. Lerro C.C., Andreotti G., Koutros S., Lee W.J., Hofmann J.N., Sandler D.P., et al. Alachlor use and cancer incidence in the agricultural health study: an updated analysis. J. Natl. Cancer Inst. 2018; 110(9): 950–8. https://doi.org/10.1093/jnci/djy005
  107. Gong F., Miller K.M. Histone methylation and the DNA damage response. Mutat. Res. Rev. Mutat. Res. 2019; 780: 37–47. https://doi.org/10.1016/j.mrrev.2017.09.003
  108. Sutton L.P., Jeffreys S.A., Phillips J.L., Taberlay P.C., Holloway A.F., Ambrose M., et al. DNA methylation changes following DNA damage in prostate cancer cells. Epigenetics. 2019; 14(10): 989–1002. https://doi.org/10.1080/15592294.2019.1629231
  109. Narváez D.M., Groot H., Diaz S.M., Palma R.M., Muñoz N., Cros M.P., et al. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury. Heliyon. 2017; 3(9): e00400. https://doi.org/10.1016/j.heliyon.2017.e00400
  110. Jamebozorgi I., Majidizadeh T., Pouryaghoub G., Mahjoubi F. Aberrant DNA methylation of two tumor suppressor genes, p14ARF and p15INK4b, after chronic occupational exposure to low level of benzene. Int. J. Occup. Environ. Med. 2018; 9(3): 145. https://doi.org/10.15171/ijoem.2018.1317
  111. Hou L., Zhang X., Wang D., Baccarelli A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012; 41(1): 79–105. https://doi.org/10.1093/ije/dyr154

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Karimov D.D., Erdman V.V., Kudoyarov E.R., Valova Y.V., Smolyankin D.A., Repina E.F., Karimov D.O.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.