Influence of occupational risk factors on human aging (literature review)
- Authors: Karimov D.D.1,2, Erdman V.V.2, Kudoyarov E.R.1, Valova Y.V.1, Smolyankin D.A.1, Repina E.F.1, Karimov D.O.1
-
Affiliations:
- Ufa Research Institute of Labor Medicine and Human Ecology
- Institute of Biochemistry and Genetics — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 101, No 4 (2022)
- Pages: 375-381
- Section: OCCUPATIONAL HEALTH
- Published: 06.05.2022
- URL: https://rjraap.com/0016-9900/article/view/639325
- DOI: https://doi.org/10.47470/0016-9900-2022-101-4-375-381
- ID: 639325
Cite item
Full Text
Abstract
Nowadays over the world absolute and relative number of aging population dramatically increases with life expectancy up and birth rate down. Aging and senescence assessment are assumed to reflect current changes, internal degeneration and various stressors respond ability (i.e. genetic, environmental and occupational factors) of human organism. Occupational experience time is leading risk factor and indicator for accelerated aging. Last years, many reports concerning aging rate dependence on physical and chemical occupational hazardous factors were published. Summarizing this exposures and their effects on aging reviews are almost absent despite many provided studies. Overview of main occupational neuropsychiatric, physical and chemical risk factors, that causes human aging acceleration presented here. Circadian rhythm disorders, allostatic load, heat stress, local vibration, chemical effects and suspended nanoparticles (fine dust) influences on aging and such signs as Alzheimer’s disease risk increase, telomere length decrease and epigenetic changes and possible interactions between them are also briefly presented. Agricultural, industrial workers, teachers and police officers aging acceleration is detected in results of analysis of biological age markers.
Contribution:
Karimov D.D. — concept of the study, data collection and processing, writing text, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article;
Erdman V.V. — concept of the study, editing, approval of the final version of the article;
Kudoyarov E.R. — collection and processing of material, writing text;
Valova Ya.V., Smolyankin D.A. – collection and processing of material;
Repina E.F. — editing;
Karimov D.O. — editing, approval of the final version of the article.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: August 30, 2021 / Accepted: April 12, 2022 / Published: April 30, 2022
About the authors
Denis D. Karimov
Ufa Research Institute of Labor Medicine and Human Ecology; Institute of Biochemistry and Genetics — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: karriden@gmail.com
ORCID iD: 0000-0002-1962-2323
MD, PhD, researcher in department of toxicology and genetics of Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation.
e-mail: karriden@gmail.com
Russian FederationVera V. Erdman
Institute of Biochemistry and Genetics — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1219-3458
Russian Federation
Eldar R. Kudoyarov
Ufa Research Institute of Labor Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2092-1021
Russian Federation
Yana V. Valova
Ufa Research Institute of Labor Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0001-6605-9994
Russian Federation
Denis A. Smolyankin
Ufa Research Institute of Labor Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7957-2399
Russian Federation
Elvira F. Repina
Ufa Research Institute of Labor Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0001-8798-0846
Russian Federation
Denis O. Karimov
Ufa Research Institute of Labor Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0003-0039-6757
Russian Federation
References
- Bai X. Biomarkers of aging. In: Aging and Aging-Related Diseases. Singapore: Springer; 2018: 217–23.
- López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217. https://doi.org/10.1016/j.cell.2013.05.039
- Descatha A., Roquelaure Y. Occupational health and valid work exposure tools are keys to improving the health of ageing workers. Occup. Environ. Med. 2018; 75(5): 398. https://doi.org/10.1136/oemed-2017-104673
- Popova A.Yu., Zaytseva N.V., Onishchenko G.G., Kleyn S.V., Glukhikh M.V., Kamaltdinov M.R. Sanitary-epidemiologic determinants and potential for growth in life expectancy of the population in the Russian Federation taking into account regional differentiation. Analiz riska zdorov’yu. 2020; (1): 4–16. https://doi.org/10.21668/health.risk/2020.1.01 (in Russian)
- Ilyushchenko V.G. Modern approaches to assessing biological age of person. Valeologiya. 2003; (3): 11–9. (in Russian)
- Domènech-Abella J., Perales J., Lara E., Moneta M.V., Izquierdo A., Rico-Uribe L.A., et al. Sociodemographic factors associated with changes in successful aging in Spain: A follow-up study. J. Aging Health. 2018; 30(8): 1244–62. https://doi.org/10.1177/0898264317714327
- Bashkireva A.S., Khurtsilava O.G., Khavinson V.Kh., Meltser A.V., Chernyakina T.S., Chernova G.I. The comparative analysis of professional accelerated ageing risk among those who work with occupational hazards. Profilakticheskaya i klinicheskaya meditsina. 2013; (4): 20–8. (in Russian)
- Sindi S., Kåreholt I., Solomon A., Hooshmand B., Soininen H., Kivipelto M. Midlife work-related stress is associated with late-life cognition. J. Neurol. 2017; 264(9): 1996–2002. https://doi.org/10.1007/s00415-017-8571-3
- Rouch I., Wild P., Ansiau D., Marquié J.C. Shiftwork experience, age and cognitive performance. Ergonomics. 2005; 48(10): 1282–93. https://doi.org/10.1080/00140130500241670
- McEwen B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 2007; 87(3): 873–904. https://doi.org/10.1152/physrev.00041.2006
- Morris J.C., Storandt M., Miller J.P., McKeel D.W., Price J.L., Rubin E.H., et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 2001; 58(3): 397–405.
- Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004; 256(3): 183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x
- Seidler A., Nienhaus A., Bernhardt T., Kauppinen T., Elo A.L., Frölich L. Psychosocial work factors and dementia. Occup. Environ. Med. 2004; 61(12): 962–71. https://doi.org/10.1136/oem.2003.012153
- Wang H.X., Wahlberg M., Karp A., Winblad B., Fratiglioni L. Psychosocial stress at work is associated with increased dementia risk in late life. Alzheimers Dement. 2012; 8(2): 114–20. https://doi.org/10.1016/j.jalz.2011.03.001
- Babanov S.A., Baraeva R.A., Budash D.S. Lesions of cardiovascular system in the practice of a pathologist. Meditsinskiy al’manakh. 2016; (4): 106–11. (in Russian)
- Domínguez F., Fuster V., Fernández-Alvira J.M., Fernández-Friera L., López-Melgar B., Blanco-Rojo R., et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 2019; 73(2): 134–44. https://doi.org/10.1016/j.jacc.2018.10.060
- Irwin M.R., Olmstead R., Carroll J.E. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry. 2016; 80(1): 40–52. https://doi.org/10.1016/j.biopsych.2015.05.014
- Irie M., Asami S., Nagata S., Miyata M., Kasai H. Relationships between perceived workload, stress and oxidative DNA damage. Int. Arch. Occup. Environ. Health. 2001; 74(2): 153–7. https://doi.org/10.1007/s004200000209
- Alzoubi K.H., Khabour O.F., Rashid B.A., Damaj I.M., Salah H.A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav. Brain. Res. 2012; 226(1): 205–10. https://doi.org/10.1016/j.bbr.2011.09.017
- Zhang Z., Chen L., Xing X., Li D., Gao C., He Z., et al. Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicol. Res. 2016; 5(4): 1193–201. https://doi.org/10.1039/c6tx00112b
- Choi J., Fauce S.R., Effros R.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2008; 22(4): 600–5. https://doi.org/10.1016/j.bbi.2007.12.004
- Zhang X., Wang Y., Zhao R., Hu X., Zhang B., Lv X., et al. Folic acid supplementation suppresses sleep deprivation-induced telomere dysfunction and senescence-associated secretory phenotype (SASP). Oxid. Med. Cell. Longev. 2019; 2019: 4569614. https://doi.org/10.1155/2019/4569614
- Litvinova N.A., Kazin E.M., Berezina M.G., Prokhorova A.M., Brozdovskaya E.V., Suvorova L.I. Pre-nosological diagnostics in assessing the health status of teachers. Valeologiya. 2003; (3): 7–11. (in Russian)
- Abramovich S.G., Bush M.P., Korovina E.O. The biological age in military men of law-enforcement organs. Sibirskiy meditsinskiy zhurnal (Irkutsk). 2008; 80(5): 27–30. (in Russian)
- Wu Y., Masurat F., Preis J., Bringmann H. Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Curr. Biol. 2018; 28(22): 3610–24. https://doi.org/10.1016/j.cub.2018.10.009
- Andel R., Crowe M., Hahn E.A., Mortimer J.A., Pedersen N.L., Fratiglioni L., et al. Work‐related stress may increase the risk of vascular dementia. J. Am. Geriatr. Soc. 2012; 60(1): 60–7. https://doi.org/10.1111/j.1532-5415.2011.03777.x
- Pavanello S., Stendardo M., Mastrangelo G., Casillo V., Nardini M., Mutti A., et al. Higher number of night shifts associates with good perception of work capacity and optimal lung function but correlates with increased oxidative damage and telomere attrition. Biomed Res. Int. 2019; 2019: 8327629. https://doi.org/10.1155/2019/8327629
- Gimaeva Z.F., Karimova L.K., Bakirov A.B., Kaptsov V.A., Kalimullina D.Kh. Risks of cardiovascular diseases evolvement and occupational stress. Analiz riska zdorov’yu. 2017; (1): 106–15. https://doi.org/10.21668/health.risk/2017.1.12 (in Russian)
- Agbenyikey W., Karasek R., Cifuentes M., Wolf P.A., Seshadri S., Taylor J.A., et al. Job strain and cognitive decline: a prospective study of the Framingham offspring cohort. Int. J. Occup. Environ. Med. 2015; 6(2): 79–94. https://doi.org/10.15171/ijoem.2015.534
- Andel R., Crowe M., Pedersen N.L., Mortimer J., Crimmins E., Johansson B., et al. Complexity of work and risk of Alzheimer’s disease: a population-based study of Swedish twins. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2005; 60(5): P251–8. https://doi.org/10.1093/geronb/60.5.p251
- Karp A., Andel R., Parker M.G., Wang H.X., Winblad B., Fratiglioni L. Mentally stimulating activities at work during midlife and dementia risk after age 75: follow-up study from the Kungsholmen Project. Am. J. Geriatr. Psychiatry. 2009; 17(3): 227–36. https://doi.org/10.1097/jgp.0b013e318190b691
- Then F.S., Luck T., Luppa M., Thinschmidt M., Deckert S., Nieuwenhuijsen K., et al. Systematic review of the effect of the psychosocial working environment on cognition and dementia. Occup. Environ. Med. 2014; 71(5): 358–65. https://doi.org/10.1136/oemed-2013-101760
- Crowe M., Andel R., Pedersen N.L., Gatz M. Do work-related stress and reactivity to stress predict dementia more than 30 years later? Alzheimer Dis. Assoc. Disord. 2007; 21(3): 205–9. https://doi.org/10.1097/wad.0b013e31811ec10a
- Stein-Behrens B.A., Sapolsky R.M. Stress, glucocorticoids, and aging. Aging (Milano). 1992; 4(3): 197–210. https://doi.org/10.1007/bf03324092
- Lupien S.J., de Leon M., De Santi S., Convit A., Tarshish C., Nair N.P., et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1998; 1(1): 69–73. https://doi.org/10.1038/271
- Roenneberg T., Merrow M. The circadian clock and human health. Curr. Biol. 2016; 26(10): 432–43. https://doi.org/10.1016/j.cub.2016.04.011
- Ulhôa M.A., Marqueze E.C., Kantermann T., Skene D., Moreno C. When does stress end? Evidence of a prolonged stress reaction in shiftworking truck drivers. Chronobiol. Int. 2011; 28(9): 810–8. https://doi.org/10.3109/07420528.2011.613136
- Richter T., von Zglinicki T. A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp. Gerontol. 2007; 42(11): 1039–42. https://doi.org/10.1016/j.exger.2007.08.005
- Houben J.M.J., Moonen H.J., van Schooten F.J., Hageman G.J. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic. Biol. Med. 2008; 44(3): 235–46. https://doi.org/10.1016/j.freeradbiomed.2007.10.001
- Kirschbaum C., Hellhammer D.H. Noise and stress-salivary cortisol as a non-invasive measure of allostatic load. Noise Health. 1999; 1(4): 57–65.
- Babisch W., Kröller-Schön S., Daiber A., Münzel T. Cardiovascular effects of noise. Noise Health. 2011; 13(52): 201–4. https://doi.org/10.4103/1463-1741.80148
- Matoba T. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review. Ind. Health. 2015; 53(6): 522–32. https://doi.org/10.2486/indhealth.2015-0040
- Dotsenko O.I. Activity of the glutathione system in the blood of mice under vibration stress. ScienceRise. 2015; 11(6): 39–46. https://doi.org/10.15587/2313-8416.2015.54809 (in Russian)
- Kia K., Fitch S.M., Newsom S.A., Kim J.H. Effect of whole-body vibration exposures on physiological stresses: mining heavy equipment applications. Appl. Ergon. 2020; 85: 103065. https://doi.org/10.1016/j.apergo.2020.103065
- Pichugina N.N., Eliseev Yu.Yu. Evaluation of occupational risk for health in multi-factor intensive influence. Saratovskiy nauchno-meditsinskiy zhurnal. 2011; 7(2): 347–50. (in Russian)
- Kharitonov V.I. Assessment of occupational health risk under multifactorial intensive exposure. Rossiyskiy mediko-biologicheskiy vestnik imeni akademika I.P. Pavlova. 2017; 25(4): 575–85. https://doi.org/10.23888/PAVLOVJ20174575-585 (in Russian)
- Lie A., Skogstad M., Johannessen H.A., Tynes T., Mehlum I.S., Nordby K.C., et al. Occupational noise exposure and hearing: a systematic review. Int. Arch. Occup. Environ. Health. 2016; 89(3): 351–72. https://doi.org/10.1007/s00420-015-1083-5
- Denisov E.I. Noise at a workplace: permissible noise levels, risk assessment and hearing loss prediction. Analiz riska zdorov’yu. 2018; (3): 13–23. https://doi.org/10.21668/health.risk/2018.3.02 (in Russian)
- Wang D., Zhou M., Li W., Kong W., Wang Z., Guo Y., et al. Occupational noise exposure and hypertension: the Dongfeng-Tongji Cohort Study. J. Am. Soc. Hypertens. 2018; 12(2): 71–9. https://doi.org/10.1016/j.jash.2017.11.001
- Chen S., Ni Y., Zhang L., Kong L., Lu L., Yang Z., et al. Noise exposure in occupational setting associated with elevated blood pressure in China. BMC Pub. Health. 2017; 17(1): 1–7. https://doi.org/10.1186/s12889-017-4050-0
- Kuang D., Yu Y.Y., Tu C. Bilateral high-frequency hearing loss is associated with elevated blood pressure and increased hypertension risk in occupational noise exposed workers. PloS One. 2019; 14(9): e0222135. https://doi.org/10.1371/journal.pone.0222135
- Nserat S., Al-Musa A., Khader Y.S., Slaih A.A., Iblan I. Blood pressure of Jordanian workers chronically exposed to noise in industrial plants. Int. J. Occup. Environ. Med. 2017; 8(4): 217. https://doi.org/10.15171/ijoem.2017.1134
- Stokholm Z.A., Bonde J.P., Christensen K.L., Hansen Å.M., Kolstad H.A. Occupational noise exposure and the risk of stroke. Stroke. 2013; 44(11): 3214–6. https://doi.org/10.1161/strokeaha.113.002798
- Stokholm Z.A., Bonde J.P., Christensen K.L., Hansen Å.M., Kolstad H.A. Occupational noise exposure and the risk of hypertension. Epidemiology. 2013; 24(1): 135–42. https://doi.org/10.1097/ede.0b013e31826b7f76
- Gan W.Q., Mannino D.M. Occupational noise exposure, bilateral high-frequency hearing loss, and blood pressure. J. Occup. Environ. Med. 2018; 60(5): 462–8. https://doi.org/10.1097/jom.0000000000001232
- Basner M., Babisch W., Davis A., Brink M., Clark C., Janssen S., et al. Auditory and non-auditory effects of noise on health. Lancet. 2014; 383(9925): 1325–32. https://doi.org/10.1016/s0140-6736(13)61613-x
- Vagapova D.M. Cognitive impairment among agricultural workers of the republic of Bashkortostan. Meditsina truda i ekologiya cheloveka. 2019; (3): 40–4. https://doi.org/10.24411/2411-3794-2019-10035 (in Russian)
- Jensen A., Jepsen J.R. Vibration on board and health effects. Int. Marit. Health. 2014; 65(2): 58–60. https://doi.org/10.5603/imh.2014.0013
- Kosarev V.V., Babanov S.A., Vorob’eva E.V. Definition of rate of biological aging at vibration disease. Uspekhi gerontologii. 2011; 24(2): 300–2. (in Russian)
- Hernández L., Terradas M., Camps J., Martín M., Tusell L., Genescà A. Aging and radiation: bad companions. Aging Cell. 2015; 14(2): 153–61. https://doi.org/10.1111/acel.12306
- Bashkireva A.S., Konovalov S.S. Prevention of Accelerated Aging of Workers in Hazardous Working Conditions [Profilaktika uskorennogo stareniya rabotayushchikh vo vrednykh proizvodstvennykh usloviyakh]. St. Petersburg: praym-EVROZNAK; 2004. (in Russian)
- Pavanello S., Pesatori A.C., Dioni L., Hoxha M., Bollati V., Siwinska E., et al. Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis. 2010; 31(2): 216–21. https://doi.org/10.1093/carcin/bgp278
- Li H., Jönsson B.A., Lindh C.H., Albin M., Broberg K. N-nitrosamines are associated with shorter telomere length. Scand. J. Work. Environ. Health. 2011; 37(4): 316–24. https://doi.org/10.5271/sjweh.3150
- Wong J.Y.Y., De Vivo I., Lin X., Christiani D.C. Cumulative PM2.5 exposure and telomere length in workers exposed to welding fumes. J. Toxicol. Environ. Health A. 2014; 77(8): 441–55. https://doi.org/10.1080/15287394.2013.875497
- Ziegler S., Schettgen T., Beier F., Wilop S., Quinete N., Esser A., et al. Accelerated telomere shortening in peripheral blood lymphocytes after occupational polychlorinated biphenyls exposure. Arch. Toxicol. 2017; 91(1): 289–300. https://doi.org/10.1007/s00204-016-1725-8
- Yuan J., Liu Y., Wang J., Zhao Y., Li K., Jing Y., et al. Long-term persistent organic pollutants exposure induced telomere dysfunction and senescence-associated secretory phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2018; 73(8): 1027–35. https://doi.org/10.1093/gerona/gly002
- Huat T.J., Camats-Perna J., Newcombe E.A., Valmas N., Kitazawa M., Medeiros R. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J. Mol. Biol. 2019; 431(9) 1843–68. https://doi.org/10.1016/j.jmb.2019.01.018
- Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956; 3(11): 298–300. https://doi.org/10.1093/geronj/11.3.298
- Orgel L.E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA. 1963; 49(4): 517. https://doi.org/10.1073/pnas.49.4.517
- Liochev S.I. Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 2013; 60: 1–4. https://doi.org/10.1016/j.freeradbiomed.2013.02.011
- Leonard S.S., Bower J.J., Shi X. Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol. Cell. Biochem. 2004; 255(1–2): 3–10. https://doi.org/10.1023/b:mcbi.0000007255.72746.a6
- Hou L., Hou L., Wang S., Dou C., Zhang X., Yu Y., et al. Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: a repeated-measure study. Environ. Int. 2012; 48: 71–7. https://doi.org/10.1016/j.envint.2012.06.020
- Dodig S., Čepelak I., Pavić I. Hallmarks of senescence and aging. Biochem. Med. 2019; 29(3): 483–97. https://doi.org/10.11613/bm.2019.030501
- Freund A., Orjalo A.V., Desprez P.Y., Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends. Mol. Med. 2010; 16(5): 238–46. https://doi.org/10.1016/j.molmed.2010.03.003
- Martin G.M. Interactions of aging and environmental agents: the gerontological perspective. Prog. Clin. Biol. Res. 1987; 228: 25–80.
- Wu Y., Liu Y., Ni N., Bao B., Zhang C., Lu L. High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup. Environ. Med. 2012; 69(8): 557–63. https://doi.org/10.1136/oemed-2011-100478
- Li H., Hedmer M., Wojdacz T., Hossain M.B., Lindh C.H., Tinnerberg H., et al. Oxidative stress, telomere shortening, and DNA methylation in relation to low‐to‐moderate occupational exposure to welding fumes. Environ. Mol. Mutagen. 2015; 56(8): 684–93. https://doi.org/10.1002/em.21958
- Pawlas N. Płachetka A., Kozłowska A., Mikołajczyk A., Kasperczyk A., Dobrakowski M., et al. Telomere length, telomerase expression, and oxidative stress in lead smelters. Toxicol. Ind. Health. 2016; 32(12): 1961–70. https://doi.org/10.1177/0748233715601758
- Bin P., Leng S.G., Cheng J., Pan Z.F., Duan H.W., Dai Y.F., et al. Association between telomere length and occupational polycyclic aromatic hydrocarbons exposure. Zhonghua Yu Fang Yi Xue Za Zhi. 2010; 44(6): 535–8. (in Chinese)
- Duan X., Zhang D., Wang S., Feng X., Wang T., Wang P., et al. Effects of polycyclic aromatic hydrocarbon exposure and miRNA variations on peripheral blood leukocyte DNA telomere length: A cross-sectional study in Henan Province, China. Sci. Total. Environ. 2020; 703: 135600. https://doi.org/10.1016/j.scitotenv.2019.135600
- Timasheva G.V., Akhmetshina V.T., Repina E.F., Khafizov A.S. Assessment of the biological age of workers engaged in hazardous working conditions. Meditsina truda i ekologiya cheloveka. 2017; (4): 53–8. (in Russian)
- Andreotti G., Hoppin J.A., Hou L., Koutros S., Gadalla S.M., Savage S.A., et al. Pesticide use and relative leukocyte telomere length in the agricultural health study. PLoS One. 2015; 10(7): e0133382. https://doi.org/10.1371/journal.pone.0133382
- Hou L., Andreotti G., Baccarelli A.A., Savage S., Hoppin J.A., Sandler D.P., et al. Lifetime pesticide use and telomere shortening among male pesticide applicators in the agricultural health study. Environ. Health Perspect. 2013; 121(8): 919–24. https://doi.org/10.1289/ehp.1206432
- Hoxha M., Dioni L., Bonzini M., Pesatori A.C., Fustinoni S., Cavallo D., et al. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ. Health. 2009; 8(1): 41. https://doi.org/10.1186/1476-069x-8-41
- Ma Y., Bellini N., Scholten R.H., Andersen M.H.G., Vogel U., Saber A.T., et al. Effect of combustion-derived particles on genotoxicity and telomere length: A study on human cells and exposed populations. Toxicol. Lett. 2020; 322: 20–31. https://doi.org/10.1016/j.toxlet.2020.01.002
- He X., Jing Y., Wang J., Li K., Yang Q., Zhao Y., et al. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations. Environ. Res. 2015; 137: 458–66. https://doi.org/10.1016/j.envres.2014.11.018
- Liu Q., Cao J., Li K.Q., Miao X.H., Li G., Fan F.Y., et al. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste. Environ. Sci. Pollut. Res. Int. 2009; 16(3): 329–38. https://doi.org/10.1007/s11356-008-0087-z
- Bassig B.A., Zhang L., Cawthon R.M., Smith M.T., Yin S., Li G., et al. Alterations in leukocyte telomere length in workers occupationally exposed to benzene. Environ. Mol. Mutagen. 2014; 55(8): 673–8. https://doi.org/10.1002/em.21880
- Zheng Y., Sanchez-Guerra M., Zhang Z., Joyce B.T., Zhong J., Kresovich J.K., et al. Traffic-derived particulate matter exposure and histone H3 modification: A repeated measures study. Environ. Res. 2017; 153: 112–9. https://doi.org/10.1016/j.envres.2016.11.015
- Dioni L., Hoxha M., Nordio F., Bonzini M., Tarantini L., Albetti B., et al. Effects of short-term exposure to inhalable particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. Environ. Health Perspect. 2011; 119(5): 622–7. https://doi.org/10.1289/ehp.1002486
- Brook R.D., Franklin B., Cascio W., Hong Y., Howard G., Lipsett M., et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004; 109(21): 2655–71. https://doi.org/10.1161/01.cir.0000128587.30041.c8
- Weng N.P., Levine B.L., June C.H., Hodes R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. PNAS. 1995; 92(24): 11091–4. https://doi.org/10.1073/pnas.92.24.11091
- Weng N. Telomere and adaptive immunity. Mech. Ageing Dev. 2008; 129(1–2): 60–6. https://doi.org/10.1016/j.mad.2007.11.005
- Ng C.Y., Amini F. Telomere length alterations in occupational toxicants exposure: an integrated review of the literature. Exp. Health. 2020; 13: 119–31. https://doi.org/10.1007/s12403-020-00367-4
- Ghosh M., Janssen L., Martens D.S., Öner D., Vlaanderen J., Pronk A., et al. Increased telomere length and mtDNA copy number induced by multi-walled carbon nanotube exposure in the workplace. J. Hazard Mater. 2020; 394: 122569. https://doi.org/10.1016/j.jhazmat.2020.122569
- Gaikwad A.S., Mahmood R., Ravichandran B., Kondhalkar S. Evaluation of telomere length and genotoxicity among asphalt associated workers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020; 858: 503255. https://doi.org/10.1016/j.mrgentox.2020.503255
- Guo X., Feng L., Lemos B., Lou J. DNA methylation modifications induced by hexavalent chromium. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 2019; 37(3): 133–45. https://doi.org/10.1080/10590501.2019.1592640
- Takiguchi M., Achanzar W.E., Qu W., Li G., Waalkes M.P. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell. Res. 2003; 286(2): 355–65. https://doi.org/10.1016/s0014-4827(03)00062-4
- Benbrahim-Tallaa L., Waterland R.A., Dill A.L., Webber M.M., Waalkes M.P. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ. Health Perspect. 2007; 115(10): 1454–9. https://doi.org/10.1289/ehp.10207
- Lin S., Huo X., Zhang Q., Fan X., Du L., Xu X., et al. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS One. 2013; 8(4): e60815. https://doi.org/10.1371/journal.pone.0060815
- Reichard J.F., Puga A. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010; 2(1): 87–104. https://doi.org/10.2217/epi.09.45
- Kwiatkowska M., Reszka E., Woźniak K., Jabłońska E., Michałowicz J., Bukowska B. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 2017; 105: 93–8. https://doi.org/10.1016/j.fct.2017.03.051
- Ock J., Kim J., Choi Y.H. Organophosphate insecticide exposure and telomere length in US adults. Sci. Total. Environ. 2020; 709: 135990. https://doi.org/10.1016/j.scitotenv.2019.135990
- Kahl V.F., Simon D., Salvador M., Branco Cdos S., Dias J.F., da Silva F.R., et al. Telomere measurement in individuals occupationally exposed to pesticide mixtures in tobacco fields. Environ. Mol. Mutagen. 2016; 57(1): 74–84. https://doi.org/10.1002/em.21984
- Kahl V.F.S., Dhillon V., Fenech M., de Souza M.R., da Silva F.N., Marroni N.A.P., et al. Occupational exposure to pesticides in tobacco fields: the integrated evaluation of nutritional intake and susceptibility on genomic and epigenetic instability. Oxid. Med. Cell. Longev. 2018; 2018: 7017423. https://doi.org/10.1155/2018/7017423
- Lerro C.C., Andreotti G., Koutros S., Lee W.J., Hofmann J.N., Sandler D.P., et al. Alachlor use and cancer incidence in the agricultural health study: an updated analysis. J. Natl. Cancer Inst. 2018; 110(9): 950–8. https://doi.org/10.1093/jnci/djy005
- Gong F., Miller K.M. Histone methylation and the DNA damage response. Mutat. Res. Rev. Mutat. Res. 2019; 780: 37–47. https://doi.org/10.1016/j.mrrev.2017.09.003
- Sutton L.P., Jeffreys S.A., Phillips J.L., Taberlay P.C., Holloway A.F., Ambrose M., et al. DNA methylation changes following DNA damage in prostate cancer cells. Epigenetics. 2019; 14(10): 989–1002. https://doi.org/10.1080/15592294.2019.1629231
- Narváez D.M., Groot H., Diaz S.M., Palma R.M., Muñoz N., Cros M.P., et al. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury. Heliyon. 2017; 3(9): e00400. https://doi.org/10.1016/j.heliyon.2017.e00400
- Jamebozorgi I., Majidizadeh T., Pouryaghoub G., Mahjoubi F. Aberrant DNA methylation of two tumor suppressor genes, p14ARF and p15INK4b, after chronic occupational exposure to low level of benzene. Int. J. Occup. Environ. Med. 2018; 9(3): 145. https://doi.org/10.15171/ijoem.2018.1317
- Hou L., Zhang X., Wang D., Baccarelli A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012; 41(1): 79–105. https://doi.org/10.1093/ije/dyr154
Supplementary files
