MALDI-TOF MS application for identification of filamentous fungi

封面

如何引用文章

全文:

详细

Introduction. MALDI-TOF identification method is widely used in microbiology due to its accuracy and rapid results achievement. However, applying this method to mold fungi faces some difficulties and is not always effective.

Purpose of the study was to evaluate the profits of using the long cultivation and protein extraction protocol in routine identification of mold fungi isolates from environment.

Materials and methods. The analysis of molds museum collection from Centre for Strategic Planning of FMBA of Russia was performed by MALDI-TOF mass-spectrometry Biotyper (Bruker Daltonics) with cultivation in liquid media and long optimized protein extraction protocol with acetonitrile and formic acid.

Results. One hundred thirty seven isolates were analyzed. Quality spectra were achieved for 71.5% of samples. Identification with MBT Filamentous Fungi Library database with the high confidence score (> 1.7) was achieved for 55% of isolates (26% with score > 2). Samples analyzed included members of nineteen families and 27 genera. 16% of samples were not identified despite producing high-quality spectra.

Limitations. When studying the possibility of using the time-of-flight mass spectrometry method to identify mold fungi, a sample of 137 isolates of mold fungi from the environment was analyzed, which is a sufficient reference sample. The analyzed samples included representatives of 19 families and 27 genera, which makes it possible to apply the findings to at least these representatives of micellar fungi. In this study 22 samples with good quality spectra, were not identified with MBT Filamentous Fungi Library database. In the future studies, these samples, along with other samples like that, will be identified by genetic molecular methods and added to the new home-made database for filamentous fungi MALDI-TOF identification.

Conclusion. Effective identification of filamentous fungi by mass-spectrometry methods requires pure culture achieved from liquid media, long optimized protocol of protein extraction and building an in-house database of spectra not presented in Bruker database.

Contribution:
Kurbatova I.V. — research concept and design, material collection and microscopic identification data processing, statistical processing, text writing, editing;
Rakitina D.V. — research concept and design, material collection and data processing, identification by MALDI-TOF statistical processing, text writing, editing;
Kravchenko E.S. — cultivation of samples;
Maniya T.R. — writing text, editing;
Aslanova M.M. — concept and design of the study, editing;
Yudin S.M. — editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgments. The research was carried out with the support of the State Assignment Reg. No. АААА-А21-121011190012-3, theme “Development of unified methods, including sampling, for the determination of microbiological and parasitological contamination of wastewater” (code “Wastewater”).

Received: March 5, 2022 / Accepted: April 12, 2022 / Published: May 31, 2022

作者简介

Irina Kurbatova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: noemail@neicon.ru
ORCID iD: 0000-0003-3152-4862
俄罗斯联邦

Darya Rakitina

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0003-3554-7690
俄罗斯联邦

Ekaterina Kravchenko

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6628-4689
俄罗斯联邦

Tamari Maniya

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: tmaniya@cspmz.ru
ORCID iD: 0000-0002-6295-661X

Researcher of Microbiology and Parasitology laboratory of the Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Moscow, 119121, Russia Federation.

e-mail: TManiya@cspmz.ru

俄罗斯联邦

Mariya Aslanova

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-5282-3856
俄罗斯联邦

Sergey Yudin

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Email: noemail@neicon.ru
俄罗斯联邦

参考

  1. Patel R. MALDI-TOF mass spectrometry: transformative proteomics for clinical microbiology. Clin. Chem. 2013; 59(2): 340–2. https://doi.org/10.1373/clinchem.2012.183558
  2. McElvania TeKippe E., Burnham C.A. Evaluation of the Bruker Biotyper and VITEK MS MALDI-TOF MS systems for the identification of unusual and/or difficult-to-identify microorganisms isolated from clinical specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33(12): 2163–71. https://doi.org/10.1007/s10096-014-2183-y
  3. Bilecen K., Yaman G., Ciftci U., Laleli Y.R. Performances and reliability of Bruker Microflex LT and VITEK MS MALDI-TOF mass spectrometry systems for the identification of clinical microorganisms. Biomed Res. Int. 2015; 2015: 516410. https://doi.org/10.1155/2015/516410
  4. Levesque S., Dufresne P.J., Soualhine H., Domingo M.C., Bekal S., Lefebvre B., et al. A side by side comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015; 10(12): e0144878. https://doi.org/10.1371/journal.pone.0144878
  5. Chen Y., Prior B.A., Shi G., Wang Z. A rapid PCR-based approach for molecular identification of filamentous fungi. J. Microbiol. 2011; 49(4): 675–9. https://doi.org/10.1007/s12275-011-0525-3
  6. Diguta C.F., Vincent B., Guilloux-Benatier M., Alexandre H., Rousseaux S. PCR ITS-RFLP: A useful method for identifying filamentous fungi isolates on grapes. Food Microbiol. 2011; 28(6): 1145–54. https://doi.org/10.1016/j.fm.2011.03.006
  7. Ferrer C., Colom F., Frasés S., Mulet E., Abad J.L., Alió J.L. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J. Clin. Microbiol. 2001; 39(8): 2873–9. https://doi.org/10.1128/JCM.39.8.2873-2879.2001
  8. Normand A.C., Cassagne C., Gautier M., Becker P., Ranque S., Hendrickx M., et al. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol. 2017; 17(1): 25. https://doi.org/10.1186/s12866-017-0937-2
  9. Gómez-Velásquez J.C., Loaiza-Díaz N., Norela Hernández G., Lima N., Mesa-Arango A.C. Development and validation of an in-house library for filamentous fungi identification by MALDI-TOF MS in a clinical laboratory in Medellin (Colombia). Microorganisms. 2020; 8(9): 1362. https://doi.org/10.3390/microorganisms8091362
  10. Zvezdanova M.E., Escribano P., Ruiz A., Martínez-Jiménez M.C., Peláez T., Collazos A., et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019; 57(1): 63–70. https://doi.org/10.1093/mmy/myx154
  11. Stein M., Tran V., Nichol K.A., Lagacé-Wiens P., Pieroni P., Adam H.J., et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses. 2018; 61(10): 743–53. https://doi.org/10.1111/myc.12800
  12. Wilkendorf L.S., Bowles E., Buil J.B., van der Lee H.A.L., Posteraro B., Sanguinetti M., et al. Update on matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi. J. Clin. Microbiol. 2020; 58(12): e01263–20. https://doi.org/10.1128/JCM.01263-20
  13. Cassagne C., Ranque S., Normand A.C., Fourquet P., Thiebault S., Planard C., et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2011; 6(12): e28425. https://doi.org/10.1371/journal.pone.0028425
  14. Chabasse B. Emergence of new fungal pathogens: general review. Rev. Francoph. Lab. 2009; 416: 71–87.
  15. Peng Y., Zhang Q., Xu C., Shi W. MALDI-TOF MS for the rapid identification and drug susceptibility testing of filamentous fungi. Exp. Ther. Med. 2019; 18(6): 4865–73. https://doi.org/10.3892/etm.2019.8118
  16. Hendrickx M. MALDI-TOF MS and filamentous fungal identification: a success story? Curr. Fungal Inf. Rep. 2017; 11(2): 60–5. https://doi.org/10.1007/s12281-017-0277-6
  17. Reeve M.A., Bachmann D. A method for filamentous fungal growth and sample preparation aimed at more consistent MALDI-TOF MS spectra despite variations in growth rates and/or incubation times. Biol. Methods. Protoc. 2019; 4(1): bpz003. https://doi.org/10.1093/biomethods/bpz003
  18. Bilay V.I., Koval’ E.Z. Aspergilli. The Determinant [Aspergilly. Opredelitel’]. Kiev: Naukova Dumka; 1988. (in Russian)
  19. Bilay V.I., Kurbatskaya Z.A. Determinant of Toxin-Forming Micromycetes [Opredelitel’ toksinobrazuyushchikh mikromitsetov]. Kiev: Naukova Dumka; 1990. (in Russian)
  20. Satton D., Fotergill A., Rinal’di M. Determinant of Pathogenic and 103 Conditionally Pathogenic Fungi [Opredelitel’ patogennykh i 103 uslovno patogennykh gribov]. Moscow: Mir; 2001. (in Russian)
  21. Booth С. The genus Fusarium. Commonwealth Mycological Inst. Kew, Surrey; 1971.
  22. Pitt J.I. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization. North Wales; 1991.
  23. Schulthess B., Ledermann R., Mouttet F., Zbinden A., Bloemberg G.V., Böttger E.C., et al. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014; 52(8): 2797–803. https://doi.org/10.1128/JCM.00049-14
  24. Ning Y.T., Yang W.H., Zhang W., Xiao M., Wang Y., Zhang J.J., et al. Developing two rapid protein extraction methods using focused-ultrasonication and zirconia-silica beads for filamentous fungi identification by MALDI-TOF MS. Front. Cell. Infect. Microbiol. 2021; 11: 687240. https://doi.org/10.3389/fcimb.2021.687240
  25. Patel R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J. Fungi (Basel). 2019; 5(1): 4. https://doi.org/10.3390/jof5010004
  26. Becker P.T., de Bel A., Martiny D., Ranque S., Piarroux R., Cassagne C., et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med. Mycol. 2014; 52(8): 826–34. https://doi.org/10.1093/mmy/myu06

补充文件

附件文件
动作
1. JATS XML

版权所有 © Kurbatova I.V., Rakitina D.V., Kravchenko E.S., Maniya T.R., Aslanova M.M., Yudin S.M., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.