Assessment of experimental conditions affecting spontaneous mutation level of Salmonella strains used in the Ames test
- Authors: Egorova O.V.1, Demidova Y.V.1, Ilyushina N.A.1
-
Affiliations:
- Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- Issue: Vol 100, No 7 (2021)
- Pages: 736-743
- Section: METHODS OF HYGIENIC AND EXPERIMENTAL INVESTIGATIONS
- Published: 23.07.2021
- URL: https://rjraap.com/0016-9900/article/view/639248
- DOI: https://doi.org/10.47470/0016-9900-2021-100-7-736-743
- ID: 639248
Cite item
Full Text
Abstract
Introduction. The bacterial reverse gene mutations test (the Ames test) is widely used to assess chemicals’ mutagenic activity. The spontaneous mutation level of test strains is a mandatory characteristic that has to be monitored in a laboratory performing mutagenicity studies using the Ames test. In this regard, it is important to assess the factors affecting the spontaneous mutation level in the experiment and, therefore, on the general conclusion on the test item mutagenicity.
Material and methods. A plate incorporation test version was used both in the presence and absence of a metabolic activation system.
Results. We summarized the historical control data obtained in the laboratory in 2016-2020, determine the fluctuation limits in the number of revertant colonies for each strain, and identify the factors affecting the negative control variability. No significant differences were found in the spontaneous background of test strains when using DMSO or water as solvents, polypropylene or polystyrene tubes, as well as Petri dishes of different types. In the case of the TA1535, TA102 and TA100 cultures, no influence of the presence of the S9 mixture on the spontaneous reversion range was revealed (p≤0.05). Statistically significant differences in the number of spontaneous revertants (at + S9 or -S9) were found for the strains that allow detecting frameshift mutations, TA97 and TA98. It has been shown that the volume of the selective medium and the brand of gelling agent in its composition are important factors leading to the variability of the historical negative control.
Conclusion. To ensure the quality of experiments according to the principles of good laboratory practice and the reliability of the data obtained using the bacterial reverse mutation method, it is necessary to standardize the operations in advance of experiments.
Contribution:
Egorova O.V. — the concept and design of the study, collection and processing of material, statistical analysis, writing a text;
Demidova Yu.V. — collection of material;
Ilyushina N.A. — processing of material, writing a text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version
Conflict of interest. The authors declare no conflict of interest.
Acknowledgment. The study had no sponsorship.
About the authors
Olga V. Egorova
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Author for correspondence.
Email: egorovaov@fferisman.ru
ORCID iD: 0000-0003-4748-8771
MD,PhD, senior researcher of the department of genetic toxicology, “Federal Scientific Center of Hygiene named after F.F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Mytishchi, 141014, Russian Federation.
e-mail: egorovaov@fferisman.ru
Russian FederationYuliya V. Demidova
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: noemail@neicon.ru
ORCID iD: 0000-0002-5356-2600
Russian Federation
Nataliya A. Ilyushina
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: noemail@neicon.ru
ORCID iD: 0000-0001-9122-9465
Russian Federation
References
- Eastmond D., Hartwig A., Anderson D., Anwar W., Cimino M., Dobrev I., et al. Mutagenicity testing for chemical risk assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis. 2009; 24(4): 341–9. https://doi.org/10.1093/mutage/gep014
- Levy D.D., Hakura A., Elespuru R.K., Escobar P.A., Kato M., Lott J., et al. Demonstrating laboratory proficiency in bacterial mutagenicity assays for regulatory submission. Mutat. Res. 2019; 848: 403075. https://doi.org/10.1016/j.mrgentox.2019.07.005
- Maron D., Ames B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983; 113(3–4): 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
- Zeiger E. Bacterial Mutation Assays. Methods Mol. Biol. 2013; 1044: 3–26. https://doi.org/10.1007/978-1-62703-529-3_1
- Ilyushina N., Egorova O., Rakitskii V. Limitations of pesticide genotoxicity testing using the bacterial in vitro method. Toxicol. in Vitro. 2019; 57: 110–6. https://doi.org/10.1016/j.tiv.2019.02.018
- Egorova O.V., Ilyushina N.A., Rakitskii V.N. Mutagenicity evaluation of pesticide analogs using standard and 6-well miniaturized bacterial reverse mutation tests. Toxicol. in Vitro. 2020; 69: 105006. https://doi.org/10.1016/j.tiv.2020.105006
- Levy D.D., Zeiger E., Escobar P.A., Hakura A., van der Leede M. B.J., Kato M., et al. Recommended criteria for the evaluation of bacterial mutagenicity data (Ames test). Mutat. Res. 2019; 848: 403074. https://doi.org/10.1016/j.mrgentox.2019.07.004
- Schoeny R., Cross K.P., DeMarini D.M., Elespuru R., Hakura A., Levy D.D., et al. Revisiting the bacterial mutagenicity assays: Report by a workgroup of the International Workshops on Genotoxicity Testing (IWGT). Mutat. Res. 2020; 849: 503137. https://doi.org/10.1016/j.mrgentox.2020.503137
- Akhal’tseva L.V., Zhurkov V.S., Sycheva L.P., Krivtsova E.K. Genetic evaluation of control variants of strains Salmonella typhimurium, used in the test salmonella/microsome (Ames test). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2015; 94(7): 103–5. (in Russian)
- Kato M., Sugiyama K.I., Fukushima T., Miura Y., Awogi T., Hikosaka S., et al. Negative and positive control ranges in the bacterial reverse mutation test: JEMS/BMS collaborative study. Genes Environ. 2018; 40: 7. https://doi.org/10.1186/s41021-018-0096-1
- Herbold B.A., Arni P., Driesel A., Engelhardt G., Jäger J., Joosten H.F., et al. Criteria for the standardization of Salmonella mutagenicity tests: results of a collaborative study. II. Studies to investigate the effect of bacterial liquid culture preparation conditions on Salmonella mutagenicity test results. Teratog. Carcinog. Mutagen. 1983; 3(2): 187–93. https://doi.org/10.1002/1520-6866(1990)3:2%3C187::aid-tcm1770030211%3E3.0.co;2-u
- Müller W., Engelhart G., Herbold B., Jäckh R., Jung R. Evaluation of mutagenicity testing with Salmonella typhimurium TA102 in three different laboratories. Environ. Health Perspect. 1993; 101(Suppl. 3): 33–6. https://doi.org/10.1289/ehp.101-1521147
- eschbacher H.U., Friederich U., Seiler J.P. Sensitivity of S. typhimurium TA97a to the type of agar used for preparation of Vogel-Bonner plates. Mutagenesis. 1983; 3(2): 195–203.
- Mortelmans K., Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000; 455(1–2): 29–60. https://doi.org/10.1016/s0027-5107(00)00064-6
- Kamath G.H., Rao K.S. Genotoxicity guidelines recommended by International Conference of Harmonization (ICH). Methods Mol. Biol. 2013; 1044: 431–58. https://doi.org/10.1007/978-1-62703-529-3_24
- Diehl M.S, Willaby S.L., Snyder R.D. Comparison of the results of a modified miniscreen and the standard bacterial reverse mutation assays. Environ. Mol. Mutagen. 2000; 36(1): 72–7. https://doi.org/10.1002/1098-2280(2000)36:1%3C72::aid-em10%3E3.0.co;2-y
- Pant K., Bruce S., Sly J., Laforce M.K., Springer S., Cecil M., et al. Bacterial mutagenicity assays: Vehicle and positive control results from the standard Ames assay, the 6- and 24-well miniaturized plate incorporation assays and the Ames II™ assay. Environ. Mol. Mutagen. 2016; 57(6): 483–96. https://doi.org/10.1002/em.22014
- Friederich U., Würgler F.E. The Salmonella/mammalian-microsome assay: variations of the test protocol; results of a questionnaire returned by 87 laboratories. Teratog. Carcinog. Mutagen. 1983; 3(2): 177–82. https://doi.org/10.1002/1520-6866(1990)3:2%3C177::aid-tcm1770030209%3E3.0.co;2-a
- Cheli C., DeFrancesco D., Petrullo L.A., McCoy E.C., Rosenkranz H.S. The Salmonella mutagenicity assay: reproducibility. Mutat. Res. 1980; 74(2): 145–50. https://doi.org/10.1016/0165-1161(80)90239-3
- Maron D., Katzenellenbogen J., Ames B.N. Compatibility of organic solvents with the Salmonella/microsome test. Mutat. Res. 1981; 88(4): 343–50. https://doi.org/10.1016/0165-1218(81)90025-2
- De Raat W.K., Willems M.I., de Meijere F.A. Effects of amount and type of agar on the number of spontaneous revertants in the Ames test. Mutat. Res. 1984; 137(1): 33–7. https://doi.org/10.1016/0165-1218(84)90109-5
- Friederich U., Aeschbacher H.U., Seiler J.P., Würgler F.E. The Salmonella/microsome assay: some possible causes for interlaboratory variations. Mutat. Res. 1982; 103(2): 133–220. https://doi.org/10.1016/0165-7992(82)90018-5
- Wilcox P., Wedd D.J., Williams W.R.D., Mee C.D., O’Donovan M.R. Sensitivity of Salmonella typhimurium TA97a to the type of agar used for preparation of Vogel-Bonner plates. Mutagenesis. 1992; 7(1): 13–8. https://doi.org/10.1093/mutage/7.1.13
- Majeska J.B., Holden H.E., Studwell D. Selection of agar for use in Salmonella typhimurium and Escherichia coli mutation assays. Environ. Mol. Mutagen. 1998; 32(2): 192–6.
- Wilson J.D. Jr., Cariello N.F. The Ames miniscreen assay: volatility of sodium azide can cause an increase in the reversion frequencies of adjacent, untreated wells. Environ. Mol. Mutagen. 1997; 29(2): 217–9. https://doi.org/10.1002/(sici)1098-2280(1997)29:2%3C217::aid-em12%3E3.0.co;2-h
- Belser W.L. Jr., Shaffer S.D., Bliss R.D., Hynds P.M., Yamamoto L., Pitts J.N. Jr., et al. A standardized procedure for quantification of the Ames Salmonella/mammalian-microsome mutagenicity test. Environ. Mutagen. 1981; 3(2): 123–39. https://doi.org/10.1002/em.2860030204
Supplementary files
