Biomarkers of ageing in the study of occupational harm impacts (literature review)
- Authors: Karimov D.D.1,2, Kudoyarov E.R.1, Mukhammadiyeva G.F.1, Ziatdinova M.M.1, Baigildin S.S.1, Yakupova T.G.1
-
Affiliations:
- Ufa Research Institute of Occupational Medicine and Human Ecology
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 100, No 11 (2021)
- Pages: 1328-1332
- Section: METHODS OF HYGIENIC AND EXPERIMENTAL INVESTIGATIONS
- Published: 06.12.2021
- URL: https://rjraap.com/0016-9900/article/view/638822
- DOI: https://doi.org/10.47470/0016-9900-2021-100-11-1328-1332
- ID: 638822
Cite item
Full Text
Abstract
Aging is an individual, complex biological process, modulated by internal and external factors, characterized by a progressive loss of biological / physiological integrity, which leads to body dysfunction, increases vulnerability and death.
Influence of activity type on aging rate has been convincingly shown in many studies, which makes it possible assess differences in aging rate of workers, exposed various occupational factors, conditions, work nature and intensity in certain professional and seniority groups, adequately reflects health state and can predict effectiveness of human labor activity. As integral indicator, it can help identify individuals at risk of age-related disorders, serving as a measure of relative fitness and predicting later life disability and mortality, regardless of chronological age.
The article provides an overview of the main measuring ageing rate methods based on biomarkers, such as functional (“Kiev model”, WAI) and molecular genetic biomarkers (determination of telomere length, β-galactosidase enzyme activity) of human ageing, applicable in occupational medicine. The review discusses the main requirements for biomarker sets compilation, methods applicability and reliability, mathematical approaches to biological age calculating, and some workers biological age calculating problems. This allows assuming the great potential for using biological age to assess the impact of working conditions and work nature on workers’ ageing rate to prevent disability and improve quality of life.
Contribution:
Karimov D.D. — concept of the study, editing, approval of the final version of the article, responsibility for the integrity of all parts of the article;
Kudoyarov E.R., Mukhammadiyeva G.F., Ziatdinova M.M., Baigildin S.S., Yakupova T.G. — collection and processing of material, writing text.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: April 29, 2021 / Accepted: September 28, 2021 / Published: November 30, 2021
Keywords
About the authors
Denis D. Karimov
Ufa Research Institute of Occupational Medicine and Human Ecology; Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: karriden@gmail.com
ORCID iD: 0000-0002-1962-2323
MD, senior researcher in the department of toxicology and genetics of Ufa Research Institute of Occupational Health and Human Ecology, Ufa, 450106, Russian Federation.
e-mail: karriden@gmail.com
Russian FederationEldar R. Kudoyarov
Ufa Research Institute of Occupational Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2092-1021
Russian Federation
Guzel F. Mukhammadiyeva
Ufa Research Institute of Occupational Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7456-4787
Russian Federation
Munira M. Ziatdinova
Ufa Research Institute of Occupational Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1848-7959
Russian Federation
Samat S. Baigildin
Ufa Research Institute of Occupational Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1856-3173
Russian Federation
Tatiana G. Yakupova
Ufa Research Institute of Occupational Medicine and Human Ecology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1236-8246
Russian Federation
References
- López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013; 153(6): 1194–217. https://doi.org/10.1016/j.cell.2013.05.039
- Ilyushchenko V.G. Modern approaches to assessing personal biological age. Valeologiya. 2003; (3): 11–9. (in Russian)
- Bashkireva A.S., Khurtsilava O.G., Khavinson V.Kh., Mel’tser A.V., Chernyakina T.S., Chernova G.I. The comparative analysis of professional accelerated ageing risk among those who work with occupational hazards. Profilakticheskaya i klinicheskaya meditsina. 2013; (4): 20–8. (in Russian)
- Domènech-Abella J., Perales J., Lara E., Moneta M.V., Izquierdo A., Rico-Uribe L.A., et al. Sociodemographic factors associated with changes in successful aging in Spain: a follow-up study. J. Aging. Health. 2018; 30(8): 1244–62. https://doi.org/10.1177/0898264317714327
- Bashkireva A.S., Konovalov S.S. Prevention of Accelerated Aging of Workers in Hazardous Working Conditions [Profilaktika uskorennogo stareniya rabotayushchikh vo vrednykh proizvodstvennykh usloviyakh]. St. Petersburg: Praym-Evroznak; 2004. (in Russian)
- Karasik D., Demissie S., Cupples L.A., Kiel D.P. Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J. Gerontol. A. Biol. Sci. Med. Sci. 2005; 60(5): 574–87. https://doi.org/10.1093/gerona/60.5.574
- Nakamura E., Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J. Gerontol. A. Biol. Sci. Med. Sci. 2007; 62(10): 1096–105. https://doi.org/10.1093/gerona/62.10.1096
- Levine M.E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A. Biol. Sci. Med. Sci. 2013; 68(6): 667–74. https://doi.org/10.1093/gerona/gls233
- Bürkle A., Moreno-Villanueva M., Bernhard J., Blasco M., Zondag G., Hoeijmakers J.H., et al. MARK-AGE biomarkers of ageing. Mech. Ageing. Dev. 2015; 151: 2–12. https://doi.org/10.1016/j.mad.2015.03.006
- Sebastiani P., Thyagarajan B., Sun F., Schupf N., Newman A.B., Montano M., et al. Biomarker signatures of aging. Aging. Cell. 2017; 16(2): 329–38.
- ylhävä J., Pedersen N.L., Hägg S. Biological age predictors. EBioMedicine. 2017; 21: 29–36. https://doi.org/10.1016/j.ebiom.2017.03.046
- Bai X. Biomarkers of Aging. Aging and Aging-Related Diseases. Springer: Singapore; 2018: 217–34.
- Dodig S., Čepelak I., Pavić I. Hallmarks of senescence and aging. Biochem. Med. (Zagreb). 2019; 29(3): 030501. https://doi.org/10.11613/bm.2019.030501
- Smirnova T.M., Krut’ko V.N., Dontsov V.I., Podkolzin A.A., Megreladtse A.G., Borisov S.E., et al. Problems of determining biological age: comparison of the effectiveness of methods of linear and nonlinear regression. Profilaktika stareniya. 1999; 2: 4–11. (in Russian)
- Kutakova N.S., Shushkova T.S., Yudina T.V. Assessment methodology of rates of biological aging in hygienic studies (review). Vestnik Rossiyskogo gosudarstvennogo meditsinskogo universiteta. 2013; (5-6). (in Russian)
- Tuomi K., Ilmarinen J., Eskelinen L., Järvinen E., Toikkanen J., Klockars M. Prevalence and incidence rates of diseases and work ability in different work categories of municipal occupations. Scand. J. Work. Environ. Health. 1991; 17(Suppl. 1): 67–74.
- Salonen P., Arola H., Nygård C.H., Huhtala H., Koivisto A.M. Factors associated with premature departure from working life among ageing food industry employees. Occup. Med. (Lond). 2003; 53(1): 65–8. https://doi.org/10.1093/occmed/kqg012
- Sell L., Bültmann U., Rugulies R., Villadsen E., Faber A., Søgaard K. Predicting long-term sickness absence and early retirement pension from self-reported work ability. Int. Arch. Occup. Environ. Health. 2009; 82(9): 1133–8. https://doi.org/10.1007/s00420-009-0417-6
- Burdorf A., Frings-Dresen M.H., van Duivenbooden C., Elders L.A. Development of a decision model to identify workers at risk of long-term disability in the construction industry. Scand. J. Work Environ. Health. 2005; 31(Suppl. 2): 31–6.
- von Bonsdorff M.B., Seitsamo J., Ilmarinen J., Nygård C.H., von Bonsdorff M.E., Rantanen T. Work ability in midlife as a predictor of mortality and disability in later life: a 28-year prospective follow-up study. CMAJ. 2011; 183(4): E235–42. https://doi.org/10.1503/cmaj.100713
- Oakman J., Neupane S., Proper K.I., Kinsman N., Nygård C.H. Workplace interventions to improve work ability: A systematic review and meta-analysis of their effectiveness. Scand. J. Work Environ. Health. 2018; 44(2): 134–46. https://doi.org/10.5271/sjweh.3685
- Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013; 15(8): 978–90. https://doi.org/10.1038/ncb2784
- Cristofalo V.J., Pignolo R.J. Molecular markers of senescence in fibroblast-like cultures. Exp. Gerontol. 1996; 31(1-2): 111–23. https://doi.org/10.1016/0531-5565(95)02018-7
- Kuilman T., Peeper D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer. 2009; 9(2): 81–94. https://doi.org/10.1038/nrc2560
- Finkel T., Serrano M., Blasco M.A. The common biology of cancer and ageing. Nature. 2007; 448(7155): 767–74. https://doi.org/10.1038/nature05985
- Freund A., Orjalo A.V., Desprez P.Y., Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 2010; 16(5): 238–46. https://doi.org/10.1016/j.molmed.2010.03.003
- Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A. Biol. Sci. Med. Sci. 2014; 69(Suppl. 1): S4–9. https://doi.org/10.1093/gerona/glu057
- Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961; 25: 585–621. https://doi.org/10.1016/0014-4827(61)90192-6
- Olovnikov A.M. The principle of marginotomy in the template synthesis of polynucleotides. Doklady Akademii nauk SSSR. 1971; 201(6): 1496–99. (in Russian)
- Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985; 43(2 Pt. 1): 405–13. https://doi.org/10.1016/0092-8674(85)90170-9
- Aubert G., Lansdorp P.M. Telomeres and aging. Physiol. Rev. 2008; 88(2): 557–79. https://doi.org/10.1152/physrev.00026.2007
- Mikhelson V.M., Gamaley I.A. Telomere shortening is main mechanism of natural and radiation aging. Radiatsionnaya biologiya. Radioekologiya. 2010; 50(3): 269–75. (in Russian)
- Mikhelson V.M., Gamaley I.A. Telomeric Mechanism of Aging [Telomernyy mekhanizm stareniya]. Saarbrucken: Palmarium Academic Publishing; 2013. (in Russian)
- Mather K.A., Jorm A.F., Parslow R.A., Christensen H. Is telomere length a biomarker of aging? A review. J. Gerontol. A. Biol. Sci. Med. Sci. 2011; 66(2): 202–13. https://doi.org/10.1093/gerona/glq180
- Smirnova T.Yu. Runov A.L., Vonskiy M.S., Spivak D.L., Zakharchuk A.G., Mikhelson V.M., et al. Telomere length in a population of long-lived people of the northwestern region of Russia. Tsitologiya. 2012; 6(5–6): 465–71. https://doi.org/10.1134/S1990519X12050112 (in Russian)
- Blasco M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007; 3(10): 640–9. https://doi.org/10.1038/nchembio.2007.38
- Tomás-Loba A., Bernardes de Jesus B., Mato J.M., Blasco M.A. A metabolic signature predicts biological age in mice. Aging. Cell. 2013; 12(1): 93–101. https://doi.org/10.1111/acel.12025
- Boccardi V., Cari L., Nocentini G., Riccardi C., Cecchetti R., Ruggiero C., et al. Telomeres increasingly develop aberrant structures in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 2020; 75(2): 230–5. https://doi.org/10.1093/gerona/gly257
- Harries L.W., Hernandez D., Henley W., Wood A.R., Holly A.C., Bradley-Smith R.M., et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell. 2011; 10(5): 868–78. https://doi.org/10.1111/j.1474-9726.2011.00726.x
- Peters M.J., Joehanes R., Pilling L.C., Schurmann C., Conneely K.N., Powell J., et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 2015; 6: 8570. https://doi.org/10.1038/ncomms9570
- Ressler S., Bartkova J., Niederegger H., Bartek J., Scharffetter-Kochanek K., Jansen-Dürr P., et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging. Cell. 2006; 5(5): 379–89. https://doi.org/10.1111/j.1474-9726.2006.00231.x
- Holly A.C., Melzer D., Pilling L.C., Henley W., Hernandez D.G., Singleton A.B., et al. Towards a gene expression biomarker set for human biological age. Aging. Cell. 2013; 12(2): 324–6. https://doi.org/10.1111/acel.12044
- Goldberg E.L., Dixit V.D. Drivers of age-related inflammation and strategies for healthspan extension. Immunol. Rev. 2015; 265(1): 63–74. https://doi.org/10.1111/imr.12295
- Noren Hooten N., Evans M.K. techniques to induce and quantify cellular senescence. J. Vis. Exp. 2017; (123): 55533. https://doi.org/10.3791/55533
- Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995; 92(20): 9363–7. https://doi.org/10.1073/pnas.92.20.9363
- Morgunova G.V., Kolesnikov A.V., Klebanov A.A., Khokhlov A.N. Senescence-associated β-galactosidase-a biomarker of aging, DNA damage, or cell proliferation restriction? Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015; (4): 15–8. https://doi.org/10.3103/S0096392515040082 (in Russian)
- Yang N.C., Hu M.L. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 2005; 40(10): 813–9. https://doi.org/10.1016/j.exger.2005.07.011
- Timasheva G.V., Akhmetshina V.T., Repina E.F., Khafizov A.S. Assessment of the biological age of workers engaged in hazardous working conditions. Meditsina truda i ekologiya cheloveka. 2017; 2017; (4): 52–8. (in Russian)
- Cesari M., Penninx B.W., Pahor M., Lauretani F., Corsi A.M., Rhys Williams G., et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J. Gerontol. A. Biol. Sci. Med. Sci. 2004; 59(3): 242–8. https://doi.org/10.1093/gerona/59.3.m242
- Belsky D.W., Caspi A., Houts R., Cohen H.J., Corcoran D.L., Danese A., et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA. 2015; 112(30): E4104–10. https://doi.org/10.1073/pnas.1506264112
- Moskalev A.A. Molecular biomarkers of aging for preventive medicine. Vestnik vosstanovitel’noy meditsiny. 2017; (1): 18–29. (in Russian)
- Belsky D.W., Caspi A., Houts R., Cohen H.J., Corcoran D.L., Danese A., et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA. 2015; 112(30): E4104–10. https://doi.org/10.1073/pnas.1506264112
- Chen B.H., Marioni R.E., Colicino E., Peters M.J., Ward-Caviness C.K., Tsai P.C., et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016; 8(9): 1844–65. https://doi.org/10.18632/aging.101020
- Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S., et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013; 49(2): 359–67. https://doi.org/10.1016/j.molcel.2012.10.016
- Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14(10): R115. https://doi.org/10.1186/gb-2013-14-10-r115
- Levine M.E., Lu A.T., Quach A., Chen B.H., Assimes T.L., Bandinelli S., et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018; 10(4): 573–91. https://doi.org/10.18632/aging.101414
- Campisi J., Vijg J. Does damage to DNA and other macromolecules play a role in aging? If so, how? J. Gerontol. A. Biol. Sci. Med. Sci. 2009; 64(2): 175–8. https://doi.org/10.1093/gerona/gln065
- Field A.E., Robertson N.A., Wang T., Havas A., Ideker T., Adams P.D. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell. 2018; 71(6): 882–95. https://doi.org/10.1016/j.molcel.2018.08.008
- Jiang S., Guo Y. Epigenetic Clock: DNA Methylation in Aging. Stem. Cells Int. 2020; 2020: 1047896. https://doi.org/10.1155/2020/1047896
- Pal S., Tyler J.K. Epigenetics and aging. Sci. Adv. 2016; 2(7): e1600584. https://doi.org/10.1126/sciadv.1600584
- Bibikova M., Barnes B., Tsan C., Ho V., Klotzle B., Le J.M., et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011; 98(4): 288–95. https://doi.org/10.1016/j.ygeno.2011.07.007
- Hou L., Zhang X., Wang D., Baccarelli A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol. 2012; 41(1): 79–105. https://doi.org/10.1093/ije/dyr154
- Sorrentino J.A., Sanoff H.K., Sharpless N.E. Defining the toxicology of aging. Trends. Mol. Med. 2014; 20(7): 375–84. https://doi.org/10.1016/j.molmed.2014.04.004
- Peterson M.J., Thompson D.K., Pieper C.F., Morey M.C., Kraus V.B., Kraus W.E., et al. A novel analytic technique to measure associations between circulating biomarkers and physical performance across the adult life span. J. Gerontol. A. Biol. Sci. Med. Sci. 2016; 71(2): 196–202. https://doi.org/10.1093/gerona/glv007
- Jia L., Zhang W., Jia R., Zhang H., Chen X. Construction formula of biological age using the principal component analysis. Biomed. Res. Int. 2016; 2016: 4697017. https://doi.org/10.1155/2016/4697017
- Litvinova N.A., Kazin E.M., Berezina M.G., Prokhorova A.M., Brozdovskaya E.V., Suvorova L.I. Pre-nosological diagnostics in assessing the health status of teachers. Valeologiya. 2003; (3): 7–11. (in Russian)
- Afanas’eva R.F., Prokopenko L.V. Biologic age as a criterion for work evaluation (exemplified by titanium alloys production). Meditsina truda i promyshlennaya ekologiya. 2009; (2): 1–5. (in Russian)
Supplementary files
