Application of imprint cytology in assessment of immunological effects of isolated and combined action of selenium and copper nanoparticles

Capa

Citar

Texto integral

Resumo

Introduction. Touch Imprint Cytology as the method of impression cytology of smears-prints is of great diagnostic value not only in clinical practice but is also of interest as an express method for assessing the immunological effects of the influence of metal-containing nanoparticles on the tissues of laboratory animals in an experiment.

Materials and methods. The study involved the spleen and mesenteric lymph nodes (MLN) of outbred male rats (24 individuals), with an initial weight of 220–230 g, after subchronic intoxication, which was caused by repeated intraperitoneal injections of metal-containing nanoparticles of selenium (SeO) and copper (CuO) nanoparticles (NPs) at a dose of 0.5 mg/kg and their combination three times a week (a total of 18 injections). After sacrificing the rats by decapitation, the spleen and MLN were removed from the animals from each group; made smears were dried at room temperature. Stained according to Leishman. Cell composition and cytological signs were assessed in a light binocular microscope by Carl Zeiss Primo Star with a USCMOS video imaging system at a magnification of 100x and 1000x under cytological criteria. Cell counting in the analysis of spleen and MLN preparations was carried out in percentage — 100 cells from each smear (48 studies), as well as calculating the number of cellular elements per 1 mm2 of the smear surface area, by calculating the absolute amount of each cellular element in the microscope field of view of 0.03 mm2, followed by recalculation per 1 mm2 (the number of studies is 48). Differences between the mean group quantitative results were processed using Student’s criteria using Excel software. Differences between mean values ​​were considered statistically significant if the probability of a random difference did not exceed 5% (р < 0.05).

Results. The main results obtained in the study of cytomorphological parameters of smears — spleen prints and MLN of rats after exposure to SeO and CuO NPs, both independently and their combination using two methods for calculating the cellular composition of preparations, are presented. The main changes in the cellular composition during immunological effects are highlighted. Inflammatory reactions of the hyperergic type were revealed when exposed to selenium nanoparticles, both in autonomous action and in combination with copper nanoparticles. The formation of local cellular immunity was noted due to an increase in the level of plasma cells in smears imprints when exposed to copper nanoparticles.

Conclusion. Using the impression method of smears-prints in conjunction with the histological examination of tissue preparations allows implementing complete cytomorphological parameters in studying the immunological effects of metal-containing nanoparticles.

Contribution:

Bushueva T.V. — design of the study, text writing;

Sakhautdinova R.R. — data collection, data processing, text writing;

Riabova Iu.V. — the collection and processing of the material;

Panov V.G. — statistics;

Sutunkova M.P., Minigalieva I.A. — editing.

All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

The conclusion of the committee on biomedical ethics: the Local Ethics Committee of the Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection, Yekaterinburg, 620014, Russian Federation approved this study, protocol number 2 of 20.04.21.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: October 6, 2021 / Accepted: November 25, 2021 / Published: December 30, 2021

Sobre autores

Renata Sakhautdinova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Autor responsável pela correspondência
Email: noemail@neicon.ru
ORCID ID: 0000-0002-2726-9259
Rússia

Iuliia Riabova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Email: noemail@neicon.ru
ORCID ID: 0000-0003-2677-0479
Rússia

Vladimir Panov

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Email: noemail@neicon.ru
ORCID ID: 0000-0001-6718-3217
Rússia

Ilzira Minigalieva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Email: noemail@neicon.ru
ORCID ID: 0000-0002-0097-7845
Rússia

Marina Sutunkova

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Email: noemail@neicon.ru
ORCID ID: 0000-0002-1743-7642
Rússia

Tatyana Bushueva

Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection

Email: bushueva@ymrc.ru
ORCID ID: 0000-0002-5872-2001

MD, PhD, Head of Laboratory Diagnostics Department, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Russian Agency for Consumer Rights Protection, Yekaterinburg, 620014, Russian Federation.

e-mail: bushueva@ymrc.ru

Rússia

Bibliografia

  1. Nelson J.D. Impression cytology. Cornea. 1988; 7(1): 71–81.
  2. Petrova A.S., Ptokhova M.P. Guidelines for the Cytological Diagnosis of Human Tumors [Rukovodstvo po tsitologicheskoy diagnostike opukholey cheloveka]. Moscow: Meditsina; 1976. (in Russian)
  3. Tashke K. Introduction to Quantitative Cytological Histological Morphology [Vvedenie v kolichestvennuyu tsito-gistologicheskuyu morfologiyu]. Bukharest; 1980. (in Russian)
  4. Barbosa R.H., Dos Santos M.L.B., Silva T.P., Rosa-Fernandes L., Pinto A.M.V., Spínola P.S., et al. Impression cytology is a non-invasive and effective method for ocular cell retrieval of Zika infected babies: perspectives in OMIC studies. Front. Mol. Neurosci. 2019; 12: 279. https://doi.org/10.3389/fnmol.2019.00279
  5. Khalid A., Haque A.U. Touch impression cytology versus frozen section as intraoperative consultation diagnosis. Int. J. Pathol. 2018; 2(2): 63–70.
  6. Kruglikov G.G., Suslov V.B. Features of functional morphology of cells on prints of organs, film samples of connective tissue and blood smears. Mediko-biologicheskie problemy. 2014; (4): 86–92. (in Russian)
  7. Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Bushueva T.V., et al. Combined subchronic toxicity of aluminum (III), titanium (IV) and silicon (IV) oxide nanoparticles and its alleviation with a complex of bioprotectors. Int. J. Mol. Sci. 2018; 19(3): 837. https://doi.org/10.3390/ijms19030837
  8. Glushkova A.V., Radilov A.S., Dulov S.A. The manifestations of toxicity of nanoparticles (a review). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2011; 90(2): 81–6. (in Russian)
  9. Dekkers S., Ma-Hock L., Lynch I., Russ M., Miller M.R., Schins R.P.F., et al. Differences in the toxicity of cerium dioxide nanomaterials after inhalation can be explained by lung deposition, animal species and nanoforms. Inhal. Toxicol. 2018; 30(7-8): 273–86. https://doi.org/10.1080/08958378.2018.1516834
  10. Gonokhova M.N., Boyko T.V., El’tsova A.A. The comparative cytomorphological characteristic of the spleen of rats at influence of pesticides. Sovremennye problemy nauki i obrazovaniya. 2013; (6): 1056. (in Russian)
  11. Dosynbaeva G.N. Cytomorphological assessment of bronchoalveolar lavage cells, liver and stomach when exposed to cotton dust, containing a organophosphorus pesticides in the experiment. International Scientific and Practical Conference World Science. 2016; 3(5): 22–30. (in Russian)
  12. Macková N.O., Leníková S., Fedorocko P., Brezáni P., Fedorocková A. Effects of cadmium on haemopoiesis in irradiated and non-irradiated mice: 2. Relationship to the number of circulating blood cells and haemopoiesis. Physiol. Res. 1996; 45(2): 101–6.
  13. Lafuente A., González-Carracedol A., Esquifino A.I. Differential effects of cadmium on blood lymphocyte subsets. Biometals. 2004; 17(4): 451–6.
  14. Dietert R.R., Lee J.E., Hussain I., Piepenbrink M. Developmental immunotoxicology of lead (review). Toxicol. Appl. Pharmacol. 2004; 198(2): 86–94. https://doi.org/10.1016/j.taap.2003.08.020
  15. Bazeluk L.Т., Duzbaeva N.М., Khanturina G.R. Temirtau dust chronic exposure on experimental animals. Eur. Res. 2013; 6(1): 1618–23.
  16. Avtandilov G.G. Medical Morphometry. Guide [Meditsinskaya morfometriya. Rukovodstvo]. Moscow: Meditsina; 1990. (in Russian)
  17. Abramov M.G. Clinical Cytology [Klinicheskaya citologiya]. Moscow: Meditsina; 1974. (in Russian)
  18. Bibbo M., Wilbur D. Comprehensive Cytopathology. Elsevier Health Sciences; 2008.
  19. Tannenbaum M., Madden J.F., ed. Diagnostic Atlas of Genitourinary Pathology. Churchill Livingstone; 2006.
  20. Shabalova I.P. Capabilities and prospects of modern clinical cytology. Novosti klinicheskoy tsitologii Rossii. 2014; 18(1–2): 64. (in Russian)
  21. Thompson D.W. Canadian experience in cytology proficiency testing. Acta Cytol. 1989; 33(4): 484–6.
  22. Nason R.W., Abdulrauf B.M., Stranc M.F. The anatomy of the accessory nerve and cervical lymph node biopsy. Am. J. Surg. 2000; 180(3): 241–3. https://doi.org/10.1016/s0002-9610(00)00449-9
  23. Hehn S.T., Grogan T.M., Miller T.P. Utility of fine-needle aspiration as a diagnostic technique in lymphoma. J. Clin. Oncol. 2004; 22(15): 3046–52. https://doi.org/10.1200/jco.2004.02.104
  24. Dunphy C.H., Ramos R. Combining fine-needle aspiration and flow cytometric immunophenotyping in evaluation of nodal and extranodal sites for possible lymphoma: A retrospective review. Diagn. Cytopathol. 1997; 16(3): 200–6. https://doi.org/10.1002/(sici)1097-0339(199703)16:3%3C200::aid-dc2%3E3.0.co;2-j
  25. Stani J. Cytologic diagnoses of reactive lymphadenopathy in fine needle aspiration biopsy specimens. Acta Cytol. 1987; 31(1): 8–13.
  26. Wakely P.E. Jr. Fine needle aspiration cytopathology of malignant lymphoma. In: Stanley M.W., ed. Clinics in Laboratory Medicine, Fine Needle Aspiration. Philadelphia: Saunders; 1998: 541–59.
  27. Milto I.V., Mikhaylov G.A., Ratkin A.V., Magaeva A.A. Influence nanoparticles on morphology of internal organs of the mouse at intravenous introduction of a solution nanopowder Fe3O4. Byulleten sibirskoy meditsiny. 2008; 7(1): 32–6. (in Russian)
  28. Oyabu T., Myojo T., Lee B.W., Okada T., Izumi H., Yoshiura Y., et al. Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int. J. Mol. Sci. 2017; 18(12): 2757. https://doi.org/10.3390/ijms18122757
  29. Hejazy M., Koohi M., Bassiri Mohamad Pour A., Najafi D. Toxicity of manufactured copper nanoparticles – a review. Nanomed. Res. J. 2018; 3(1): 1–9. https://doi.org/10.22034/nmrj.2018.01.001
  30. Lyamina S.V., Malyshev I.Yu. Macrophage polarization in the modern concept of immune response development. Fundamental’nye issledovaniya. 2014; (10–5): 930–5. (in Russian)
  31. Naito M., Hasegawa G., Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc. Res. Tech. 1997; 39(4): 350–64. https://doi.org/10.1002/(sici)1097-0029(19971115)39:4%3C350::aid-jemt5%3E3.0.co;2-l
  32. Zigmond E., Samia-Grinberg S., Pasmanik-Chor M., Brazowski E., Shibolet O., Halpern Z., et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 2014; 193(1): 344–53. https://doi.org/10.4049/jimmunol.1400574
  33. Elbakidze G.M. Mechanisms of protective influence of endotoxin-activated Kupffer cells on hepatocytes. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2012; 67(5): 48–54. https://doi.org/10.15690/vramn.v67i5.274 (in Russian)
  34. Burmester G.R., Pezzutto A., Ulrichs T., Aicher A. Color Atlas of Immunology. Stuttgart: Georg Thieme Verlag; 2003.
  35. Galić E., Ilić K., Hartl S., Tetyczka C., Kasemets K., Kurvet I., et al. Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food Chem. Toxicol. 2020; 144: 111621. https://doi.org/10.1016/j.fct.2020.111621
  36. Radauer-Preiml I., Andosch A., Hawranek T., Luetz-Meindl U., Wiederstein M., Horejs-Hoeck J. Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Part. Fibre Toxicol. 2016; 13: 3. https://doi.org/10.1186/s12989-016-0113-0

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Sakhautdinova R.R., Riabova I.V., Panov V.G., Minigalieva I.A., Sutunkova M.P., Bushueva T.V., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.