Methodical approaches to the detection polycyclic aromatic hydrocarbons in ambient air (analytical review)
- Authors: Ulanova T.S.1, Karnazhitskaya T.D.1, Zorina A.S.1, Starchikova M.O.1
-
Affiliations:
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
- Issue: Vol 101, No 11 (2022)
- Pages: 1393-1402
- Section: METHODS OF HYGIENIC AND EXPERIMENTAL INVESTIGATIONS
- Published: 26.12.2022
- URL: https://rjraap.com/0016-9900/article/view/638772
- DOI: https://doi.org/10.47470/0016-9900-2022-101-11-1393-1402
- ID: 638772
Cite item
Full Text
Abstract
Among the persistent organic pollutants of atmospheric air, a special place is occupied by a group of polycyclic aromatic hydrocarbons (PAHs) or polyarenes due to their high carcinogenic hazard. In view of the ubiquitous presence of these substances in the atmospheric air, low values of hygienic standards and values of reference concentrations (RfC) for chronic inhalation exposure, the qualitative and quantitative identification of PAHs is the critical task.
Purpose is to analyze modern methodological approaches used in laboratory practice to determine polyarenes in atmospheric air on the base of Russian and foreign sources. The paper considers modern methods for the analytical control of PAHs in atmospheric air, officially approved in the Russian Federation and presented in the world literature. The search for literary sources was carried out using the PubMed, RSC Publishing, Springer Nature, SCOPUS, eLIBRARY.RU databases. An analysis of the methodological and scientific and technical literature on methods for the determination of PAHs in atmospheric air made it possible to identify the main directions of methodological developments used in modern laboratory practice for the analytical control of polyarenes in air.
The advantages and disadvantages of specific methods, individual stages of analysis, conditions for sampling, storage and transportation of samples, which together can lead to false positive or false negative results, are presented.
Conclusion. Modern methods for the analysis of polyarenes in atmospheric air are the result of continuous improvement in the technique of performing individual analytical procedures, the development of new methodological approaches to solving analytical problems, the emergence of new, more advanced measuring and auxiliary equipment, which makes it possible to develop highly sensitive and highly selective methods for measuring toxicants in the human environment at the level of MPCdaily average, MPCone-time and RfC for chronic inhalation exposure.
Contribution:
Ulanova T.S. — concept and design of the study, editing, approval of the final version of the article;
Karnazhickaja T.D. — writing text, collection and statistical processing of material;
Zorina A.S. — writing text, collection and statistical processing of material;
Starchikova M.O. — writing text, collection and statistical processing of material.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: September 6, 2022 / Accepted: October 3, 2022 / Published: November 30, 2022
About the authors
Tatyana S. Ulanova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Author for correspondence.
Email: noemail@neicon.ru
ORCID iD: 0000-0002-9238-5598
Russian Federation
Tatyana D. Karnazhitskaya
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: tdkarn@fcrisk.ru
ORCID iD: 0000-0001-6768-0045
MD, PhD, Head of the Liquid Chromatography Laboratoryof the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm city, 614045, Russian Federation.
e-mail: tdkarn@fcrisk.ru
Russian FederationAnastasiya S. Zorina
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: noemail@neicon.ru
ORCID iD: 0000-0002-4276-9921
Russian Federation
Mariya O. Starchikova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: noemail@neicon.ru
ORCID iD: 0000-0002-3259-1509
Russian Federation
References
- Polycyclic aromatic hydrocarbon. Available at: https://web.archive.org/web/20090629011257/
- Nikiforova E.M., Kosheleva N.E. Polycyclic aromatic hydrocarbons in pavement and ekranozems in the eastern district of Moscow. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Prikladnaya ekologiya. Urbanistika. 2020; (2): 94–117. https://doi.org/10.15593/2409-5125/2020.02.07 (in Russian)
- Yamanaka T., Mizota C., Murae1 T., Hashimoto J. A currently forming petroleum associated with hydrothermal mineralization in a submarine caldera, Kagoshima Bay, Japan. Geochem. J. 1999; 33(6): 355–67. https://doi.org/10.2343/geochemj.33.355
- Rovinskiy F.Ya., Teplitskaya T.A., Alekseeva T.A. Background Monitoring of Polycyclic Aromatic Hydrocarbons [Fonovyy monitoring politsiklicheskikh aromaticheskikh uglevodorodov]. Leningrad: Gidrometeoizdat; 1988. (in Russian)
- USEPA. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/ R-93/089. Washington; 1993. Available at: https://semspub.epa.gov/work/HQ/100000047.pdf
- Ramesh A., Harris K.J., Archibong A.E. Reproductive toxicity of polycyclic aromatic hydrocarbons. In: Gupta R.C. Reproductive and Developmental Toxicology. Elsevier Inc.; 2017: 745–63. https://doi.org/10.1016/B978-0-12-804239-7.00040-8
- Ma W., Qi H., Baidron S., Liu L., Yang M., Li Y. Implications for long-range atmospheric transport of polycyclic aromatic hydrocarbons in Lhasa, China. Environ. Sci. Pollut. Control Ser. 2013; 20(8): 5525–33. https://doi.org/10.1007/s11356-013-1577-1
- Lin Y., Qiu X., Ma Y., Ma J., Zheng M., Shao M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 2015; 196: 164–170. https://doi.org/10.1016/j.envpol.2014.10.005
- Tian M., Yang F., Chen S., Wang H., Chen Y., Zhang L., et al. Atmospheric deposition of polycyclic aromatic compounds and associated sources in an urban and a rural area of Chongqing, China. Chemosphere. 2017; 187: 78–87. https://doi.org/10.1016/j.chemosphere.2017.08.077
- Zhang J., Yang L., Mellouki A., Chen J., Chen X., Gao Y., et al. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in northern China: molecular composition, sources, and ageing. Atmos. Environ. 2018; 173: 256–264. https://doi.org/10.1016/j.atmosenv.2017.11.002
- Miguel A., De Andrade J.B. Rapid quantitation of ten polycyclic aromatic hydrocarbons in atmospheric aerosols by direct HPLC separation after ultrasonic acetonitrile extraction. Int. J. Environ. Anal. Chem. 1989; 35(1): 35–41. https://doi.org/10.1080/03067318908028376
- Kulkarni P., Venkataraman C. Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos. Environ. 2000; 34(17): 2785–90. https://doi.org/10.1016/s1352-2310(99)00312-x
- Bacaloni A., Cafaro C., De Giorgi L., Ruocco R., Zoccolillo L. Improved analysis of polycyclic aromatic hydrocarbons in atmospheric particulate matter by HPLC-fluorescence. Ann. Chim. 2004; 94(9–10): 751–9. https://doi.org/10.1002/adic.200490093
- Cincinelli A., Del Bubba M., Martellini T., Gambaro A., Lepri L. Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere. 2007; 68(3): 472–8. https://doi.org/10.1016/j.chemosphere.2006.12.089
- Castro D., Slezakova K., Oliva-Teles M., Delerue-Matos C., Alvim-Ferraz M., Morais S., et al. Analysis of polycyclic aromatic hydrocarbons in atmospheric particulate samples by microwave-assisted extraction and liquid chromatography. J. Sep. Sci. 2009; 32(4): 501–10. https://doi.org/10.1002/jssc.200800495
- Kojima Y., Inazu K., Hisamatsu Y., Okochi H., Baba T., Nagoya T. Influence of secondary formation on atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles. Atmos. Environ. 2010; 44(24): 2873–80. https://doi.org/10.1016/j.atmosenv.2010.04.048
- Borras E., Tortajada-Genaroa L.A. Characterisation of polycyclic aromatic hydrocarbons in atmospheric aerosols by gas chromatography-mass spectrometry. Analyt. Chim. Acta. 2007; 583(2): 266–76. https://doi.org/10.1016/j.aca.2006.10.043
- Method TO-13A. Determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography/mass spectrometry (GC/MS). Available at: https://www.epa.gov/sites/default/files/2019-11/documents/to-13arr.pdf
- Moriwaki H., Imaeda A., Arakawa R. Electrospray mass spectrometric determination of polycyclic aromatic hydrocarbons by detecting the p–p complexes with tropylium cation. Anal. Commun. 1999; 36(2): 53–6. https://doi.org/10.1039/A809573F
- Marvin C., Smith R., Bryant D., McCarry B. Analysis of high-molecular-mass polycyclic aromatic hydrocarbons in environmental samples using liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 1999; 863(1): 13–24. https://doi.org/10.1016/s0021-9673(99)00955-3
- Perez S., Barcelo D. Determination of polycyclic aromatic hydrocarbons in sewage reference sludge by liquid chromatography-atmospheric-pressure chemical-ionization mass spectrometry. Chromatographia. 2001; 53(9/10): 475–80. https://doi.org/10.1007/BF02491606
- Gimeno R., Altelaar A., Marce R., Borrull F. Determination of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles by high-performance liquid chromatography with fluorescence and atmospheric pressure chemical ionization mass spectrometry detection in seawater and sediment samples. J. Chromatogr. A. 2002; 958(1-2): 141–8. https://doi.org/10.1016/S0021-9673(02)00386-2
- Robb D., Covey T., Bruins A. Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 2000; 72(15): 3653–9. https://doi.org/10.1021/ac0001636
- Dorogova V.B. About sampling air for analyses of polluting substances. Ekologiya cheloveka. 2010; (3): 16–8. (in Russian)
- Dorogova V.B., Zhurba O.M. Some aspects of air sampling. In: Materials of the XI All-Russian Congress of Hygienists and Sanitary Doctors «Results and Prospects of Ensuring the Sanitary and Epidemiological Well-Being of the Population of the Russian Federation» [Materialy XI Vserossiyskogo s”ezda gigienistov i sanitarnykh vrachey «Itogi i perspektivy obespecheniya sanitarno-epidemiologicheskogo blagopoluchiya naseleniya RF»]. Moscow; 2012: 423–6. (in Russian)
- Coutant R., Brown L., Chuang J., Riggin R., Lewis R. Phase distribution and artifact formation in ambient air sampling for polynuclear aromatic hydrocarbons. Atmos. Environ. 1988; 22(2): 403–9. https://doi.org/10.1016/0004-6981(88)90046-7
- Pyysalo H., Tuominen J., Wickstrom K., Skitta E., Tikkanen L. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapor phases in an industrial town in Finland. Atmos. Environ. 1987; 21(5): 1167–80. https://doi.org/10.1016/0004-6981(87)90244-7
- Arey J., Zielinska B., Atkinson R., Winner A. Polycyclic aromatic hydrocarbon and nitroarene concentrations in ambient air during a wintertime high-no, episode in the Los Angeles Basin. Atmos. Environ. 1987; 21(6): 1437–44. https://doi.org/10.1016/0004-6981(67)90091-1
- Liu Y., Sklorz M., Schnelle-Kreis J., Orasche J., Ferge T., Kettrup A., et al. Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: Evaluation of sampling artifact. Chemosphere. 2006; 62(11): 1889–98. https://doi.org/10.1016/j.chemosphere.2005.07.049
- Knecht U., Woitowitz H.J. PAH-losses from glass fiber filters under the conditions of different air volume sampling: results of field evaluations in occupational atmospheres. Fresenius Z. Anal. Chem. 1988; 331(1): 8–13. https://doi.org/10.1007/BF00473887
- Saim N., Dean J., Abdullah M., Zakaria Z. Extraction of polycyclic aromatic hydrocarbons from contaminated soil using Soxhlet extraction, pressurised and atmospheric microwave-assisted extraction, supercritical fluid extraction and accelerated solvent extraction. J. Chromatogr. A. 1997; 791(1–2): 361–6. https://doi.org/10.1016/S0021-9673(97)00768-1
- Rehwagen M., Müller A., Massolo L., Herbarth O., Ronco A. Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci. Total Environ. 2005; 348(1–3): 199–210. https://doi.org/10.1016/j.scitotenv.2004.12.050
- Re-Poppi N., Santiago-Silva M. Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil. Atmos. Environ. 2005; 39(16): 2839–50. https://doi.org/10.1016/j.atmosenv.2004.10.006
- Su Y., Lei Y., Wania F., Shoeib M., Harner T. Regressing gas/particle partitioning data for polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2006; 40(11): 3558–64. https://doi.org/10.1021/es052496w
- Albinet A., Leoz-Garziandia E., Budzinski H., ViIlenave E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (south of France): concentrations and sources. Sci. Total Environ. 2007; 384(1–3): 280–92. https://doi.org/10.1016/j.scitotenv.2007.04.028
- Choi S., Kwon H., Lee Y., Park E., Oh J. Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. J. Hazard Mater. 2012; 241: 252–8. https://doi.org/10. 1016/j.jhazmat.2012.09.039
- Shen G., Tao S., Wei S., Chen Y., Zhang Y., Shen H. et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ. Sci. Technol. 2013; 47(6): 2998–3005. https://doi.org/10.1021/es304599g
- Hu H., Tian M., Zhang L., Yang F., Peng C., Chen Y., et al. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China. Atmos. Environ. 2019; 206: 1–10. https://doi.org/10.1016/j.atmosenv.2019.02.041
- Hawthorne S., Miller D. Extraction and recovery of polycyclic aromatic hydrocarbons from environmental solids using supercritical fluids. Anal. Chem. 1987; 59(13): 1705–8. https://doi.org/10.1021/ac00140a026
- Gazzetta Ufficiale. DM (Ministerial decree). Aggiornamento delle norme techniche inmateria di limiti di concentrazione e di livelli di attenzione e di allarme per gli inquinamentiatmosferci nelle aree urbane e disposizioni per la misura di alcuni inquinanti di cui al decretoministeriale 15 aprile 1994. Allegato VII “Metodo di riferimento per la determinazione diidrocarburi policiclici aromatici. Available at: https://www.gazzettaufficiale.it/eli/id/1994/12/13/094A7814/sg
- Ambient air pollution by Polycyclic Aromatic Hydrocarbons (PAH). Position Paper. Publications of the European Commission. Available at: https://ec.europa.eu/environment/archives/air/pdf/pp_pah.pdf
- May W., Parris R., Beck C., Fassett J., Greenberg R., Guenther F., et al. Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements: NIST Special Publication 260–136, U.S., 2020. Available at: https://www.nist.gov/system/files/documents/srm/SP260-136.PDF
- Pilot Study and Intercomparison Exercise on Atmospheric Inputs of PAHs. Available at: https://ospar.org›documents?v=6925
- Esen F., Cindoruk S., Tasdemir Y. Ambient concentrations and gas/particle partitioning of polycyclic aromatic hydrocarbons in an urban site in Turkey. Environ. Forensics. 2006; 7(4): 303–12. https://doi.org/10.1080/15275920600996099
- Park S., Kim Y., Kang C. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002; 36(17): 2917–24. https://doi.org/10.1016/S1352-2310(02)00206-6
- Mandalakis M., Tsapakis M., Tsoga A., Stephanou E. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos. Environ. 2002; 36(25): 4023–35. https://doi.org/10.1016/S1352-2310(02)00362-X
- Ayyildiz E., Sari M., Gunes M., Tasdemir Y., Esen F. Determination of Atmospheric PAHs Concentration by Using Honeybee and Passive Air Sampler. In: Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE’19). Avestia Publ.; 2019. https://doi.org/10.11159/iceptp19.120
Supplementary files
