Analytical review of Russian and foreign methods for selective control of chemicals acting as markers of petrochemical and chemical productions in water media
- Authors: Nurislamova, T.V.1, Popova N.A.1, Maltseva O.A.1
-
Affiliations:
- Federal Scientific Center for Medical and Preventive Technologies for Public Health Risk Management
- Issue: Vol 103, No 5 (2024)
- Pages: 496-502
- Section: METHODS OF HYGIENIC AND EXPERIMENTAL INVESTIGATIONS
- Published: 21.06.2024
- URL: https://rjraap.com/0016-9900/article/view/638218
- DOI: https://doi.org/10.47470/0016-9900-2024-103-5-496-502
- ID: 638218
Cite item
Abstract
Provision of sanitary-epidemiological welling for the population of the Russian Federation is a mandatory condition that ensures protection of the citizen’s right to health care and favourable environment guaranteed by the Constitution.
The aim of this study was to conduct analytical review of foreign and Russian methods for selective control of chemicals acting as markers of petrochemical and chemical productions in water media.
The review focused on analyzing Russian and foreign scientific and methodical studies describing methods and methodology for identifying mass concentrations of benzene, ethylbenzene, and acrylonitrile in water as markers of petrochemical and chemical productions. The analyzed period was 71 year (between 1952 and 2023).
The review dwells on methodologies for identifying benzene, ethylbenzene, and acrylonitrile in water media (tap water, water from non-centralized water supply, water objects used for household needs and recreation, sea water in places used by people, water in swimming pools and aqua parks, water in surface sources used for centralized drinking water supply, household needs and at food manufacturing enterprises). The outlined methodologies rely on using physical and chemical analytical methods including spectrophotometry, gas chromatography (GC), high performance liquid chromatography (HPLC) with different detectors, gas chromatography – mass spectrometry (GC-MS).
Conclusion. Analysis of available methodical documents has revealed the Russian methodological base on control of toxic benzene, ethylbenzene and acrylonitrile in water to be far from the perfect. Given the introduced changes in regulatory indicators in the SanPiN 1.2.3685–21 in drinking water from centralized and non-centralized water supply systems, sensitivity of previously developed methodologies has become insufficient. This requires developing new precise analytical methodologies of gas chromatography – mass spectrometry to identify toxic benzene, ethylbenzene, and acrylonitrile in water media with characteristics conforming to international standards.
The aim of this study was to conduct analytical review of foreign and Russian methods for selective control of chemicals acting as markers of petrochemical and chemical productions in water media.
The review focused on analyzing Russian and foreign scientific and methodical studies describing methods and methodology for identifying mass concentrations of benzene, ethylbenzene, and acrylonitrile in water as markers of petrochemical and chemical productions. The analyzed period was 71 year (between 1952 and 2023).
The review dwells on methodologies for identifying benzene, ethylbenzene, and acrylonitrile in water media (tap water, water from non-centralized water supply, water objects used for household needs and recreation, sea water in places used by people, water in swimming pools and aqua parks, water in surface sources used for centralized drinking water supply, household needs and at food manufacturing enterprises). The outlined methodologies rely on using physical and chemical analytical methods including spectrophotometry, gas chromatography (GC), high performance liquid chromatography (HPLC) with different detectors, gas chromatography – mass spectrometry (GC-MS).
Conclusion. Analysis of available methodical documents has revealed the Russian methodological base on control of toxic benzene, ethylbenzene and acrylonitrile in water to be far from the perfect. Given the introduced changes in regulatory indicators in the SanPiN 1.2.3685–21 in drinking water from centralized and non-centralized water supply systems, sensitivity of previously developed methodologies has become insufficient. This requires developing new precise analytical methodologies of gas chromatography – mass spectrometry to identify toxic benzene, ethylbenzene, and acrylonitrile in water media with characteristics conforming to international standards.
About the authors
Tatyana V. Nurislamova,
Federal Scientific Center for Medical and Preventive Technologies for Public Health Risk Management
Author for correspondence.
Email: nurtat@fcrisk.ru
ORCID iD: 0000-0002-2344-3037
Russian Federation
Nina A. Popova
Federal Scientific Center for Medical and Preventive Technologies for Public Health Risk Management
Email: popova@fcrisk.ru
ORCID iD: 0000-0002-9730-9092
Russian Federation
Olga A. Maltseva
Federal Scientific Center for Medical and Preventive Technologies for Public Health Risk Management
Email: malceva@fcrisk.ru
ORCID iD: 0000-0001-7664-3270
Russian Federation
References
- Клейн С.В., Вековшинина С.А. Приоритетные факторы риска питьевой воды систем централизованного питьевого водоснабжения, формирующие негативные тенденции в состоянии здоровья населения. Анализ риска здоровью. 2020; (3): 49–60. https://doi.org/10.21668/health.risk/2020.3.06 https://elibrary.ru/tkvfdn
- Механтьев И.И. Риск здоровью населения Воронежской области, обусловленный качеством питьевой воды. Здоровье населения и среда обитания – ЗНиСО. 2020; (4): 37–42. https://doi.org/10.35627/2219-5238/2020-325-4-37-42 https://elibrary.ru/ttxyob
- Suleimanov R.A., Bakirov A.B., Gimranova G.G., Valeev T.K. Hygienic assessment of health risks of the population living in the areas of intensive oil extraction. Amazonia Investiga. 2020; 9(26): 97–104. https://doi.org/10.34069/AI/2020.26.02.11 https://elibrary.ru/hsozul
- Валеев Т.К., Рахманин Ю.А., Сулейманов Р.А., Малышева А.Г., Бакиров А.Б., Рахматуллин Н.Р. и др. Опыт эколого-гигиенической оценки загрязнения водных объектов на территориях размещения предприятий нефтеперерабатывающих и нефтехимических комплексов. Гигиена и санитария. 2020; 99(9): 886–93. https://doi.org/10.47470/0016-9900-2020-99-9-886-893 https://elibrary.ru/vrzzal
- Аксенов В.И., Аникин Ю.В., Галкин Ю.А., Ничкова И.И., Ушакова Л.И., Царев Н.С. Применение флокулянтов в системах водного хозяйства. Екатеринбург; 2008. https://elibrary.ru/wjrfoh
- Смолягин А.И., Михайлова И.В., Ермолина Е.В., Красиков С.И., Боев В.М. Экспериментальное исследование влияния бензола и хрома на иммунную систему организма. Иммунология. 2013; 34(1): 57–60. https://elibrary.ru/pvghff
- Михайлова И.В., Смолягин А.И., Красиков С.И., Караулов А.В. Влияние бензола на иммунную систему и некоторые механизмы его действия. Иммунология. 2014; 35(1): 51–5. https://elibrary.ru/ryxxbb
- The National Institute for Occupational Safety and Health (NIOSH). Ethyl benzene; 2019. Available at: https://cdc.gov/niosh/npg/npgd0264.html
- ATSDR: Agency for Toxic Substances & Diseases Registry; 2020. Available at: https://www.atsdr.cdc.gov/
- IARC Monographs on the Identification of Carcinogenic Hazards to Humans: Volumes 1–127. Lyon; 2020.
- Something’s in the Water: A Look at How Creativity and Innovation Can Prevent Future Water Crises; 2019. Available at: https://digitalcommons.buffalostate.edu/creativeprojects/304/
- EPA United States Environmental Protection Agency. Toxic and Priority Pollutants Under the Clean Water Act; 2015. Available at: https://epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act
- Малышева А.Г., Топорова И.Н. Газохроматографическое определение толуола и этилбензола в воде. Гигиена и санитария. 1998; 77(5): 73–5. https://elibrary.ru/vzzxuf
- Сотников Е.Е., Загайнов В.Ф., Михайлова Р.И., Милочкин Д.А., Рыжова И.Н., Корнилов И.О. Парофазный анализ летучих органических соединений в питьевой воде методом газовой хроматографии. Гигиена и санитария. 2014; 93(2): 92–6. https://elibrary.ru/sbkjlz
- Витенберг А.Ф., Иоффе Б.В. Статический парофазный газохроматографический анализ. Физико-химические основы и области применения. Российский химический журнал. 2003; 47(1): 7–22.
- Гладилович В.Д., Подольская Е.П. Возможности применения метода ГХ-МС (обзор). Научное приборостроение. 2010; 20(4): 36–49. https://elibrary.ru/mzizkt
- Сотников Е.Е., Московкин А.С. Изучение свойств и строения органических веществ. Журнал аналитической химии. 2005; 60(2): 171–3. https://elibrary.ru/hrysyt
- Baltussen E., Cramers C.A., Sandra P.J. Sorptive sample preparation – a review. Anal. Bioanal. Chem. 2002; 373(1–2): 3–22. https://doi.org/10.1007/s00216-002-1266-2
- Namieśnik J., Wardencki W. Solventless sample preparation techniques in environmental analysis. HRC J. High Resolut. Chromatogr. 2000; 23(4): 297–303. https://clck.ru/3BD8d5
- Kubinec R., Adamuscin J., Jurdáková H., Foltin M., Ostrovský I., Kraus A., et al. Gas chromatographic determination of benzene, toluene, ethylbenzene and xylenes using flame ionization detector in water samples with direct aqueous injection up to 250 microl. J. Chromatogr. A. 2005; 1084(1–2): 90–4. https://doi.org/10.1016/j.chroma.2004.12.035
- Ma X., Huang M., Li Z., Wu J. Hollow fiber supported liquid-phase microextraction using ionic liquid as extractant for preconcentration of benzene, toluene, ethylbenzene and xylenes from water sample with gas chromatography-hydrogen flame ionization detection. J. Hazard. Mater. 2011; 194: 24–9. https://doi.org/10.1016/j.jhazmat.2011.07.066
- Sarafraz-Yazdi A., Amiri A., Rounaghi G., Hosseini H.E. A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame ionization detector. J. Chromatogr. A. 2011; 1218(34): 5757–64. https://doi.org/10.1016/j.chroma.2011.06.099
- Przyjazny A., Kokosa J.M. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction. J. Chromatogr. A. 2002; 977(2): 143–53. https://doi.org/10.1016/s0021-9673(02)01422-x
- European Environment Agency (EEA). Available at: https://eea.europa.eu/ru
- Lee M.R., Chang C.M., Dou J. Determination of benzene, toluene, ethylbenzene, xylenes in water at sub-ng l-1 levels by solid-phase microextraction coupled to cryo-trap gas chromatography-mass spectrometry. Chemosphere. 2007; 69(9): 1381–7. https://doi.org/10.1016/j.chemosphere.2007.05.004
- Fernández E., Vidal L., Canals A. Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography-mass spectrometry. J. Chromatogr. A. 2016; 1458: 18–24. https://doi.org/10.1016/j.chroma.2016.06.049
- Nojavan S., Yazdanpanah M. Micro-solid phase extraction of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using water-insoluble β-cyclodextrin polymer as sorbent. J. Chromatogr. A. 2017; 1525: 51–9. https://doi.org/10.1016/j.chroma.2017.10.027
- Pascale R., Bianco G., Calace S., Masi S., Mancini I.M., Mazzone G., et al. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography-barrier ionization discharge detection. J. Chromatogr. A. 2018; 1548: 10–8. https://doi.org/10.1016/j.chroma.2018.03.018
- Naing N.N., Li S.F.Y., Lee H.K. Application of porous membrane-protected chitosan microspheres to determine benzene, toluene, ethylbenzene, xylenes and styrene in water. J. Chromatogr. A. 2016; 1448: 42–8. https://doi.org/10.1016/j.chroma.2016.04.062
- Hashemi M., Jahanshahi N., Habibi A. Application of ultrasound-assisted emulsification microextraction for determination of benzene, toluene, ethylbenzene and o-xylene in water samples by gas chromatography. Desalinatio. 2012; 288: 93–7. https://doi.org/10.1016/j.desal.2011.12.017
- U.S. EPA. Method 8316 (SW-846): Acrylamide, Acrylonitrile and Acrolein by High Performance Liquid Chromatography (HPLC); 1994. Available at: https://nemi.gov/methods/method_summary/10001/
Supplementary files
