The Role of Metabolites of the Phosphoinositide Cycle in the Regulation of Excitation Conditions and Regeneration of Damaged Somatic Nerves under the Action of Insulin-Like Growth Factor-1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the qualitative composition and quantitative content of metabolites of the phosphoinositide cycle have been studied and their participation in the process of excitation conduction along nerve conductors and regeneration of damaged somatic nerves under the action of insulin-like growth factor-1 have been established. It was shown that during nerve excitation there is a decrease in the level of phosphatidylinositol and phosphatidylinositol-4,5-diphosphate and an increase in the content of phosphatidylinositol-4-monophosphate and phosphatidylinositol-3,4,5-triphosphate, which indicates the intensification of phosphoinositide metabolism under conditions of depolarization of the nerve fiber membrane, and there is also a redistribution of fatty acids in the composition of phosphatidylinositol, diacylglycerol and free fatty acid fractions. Nerve transection is accompanied by accumulation of all forms of phosphoinositides and a decrease in the level of diacylglycerol in both proximal and distal sections of the nerve conductor, apparently as a result of inactivation of phosphoinositide-specific phospholipase C. Against the background of intramuscular injection of insulin-like growth factor-1 at a concentration of 100 ng/kg, intensification of phosphoinositide metabolism, accumulation of diacylglycerol and decrease in the level of free fatty acids were observed. The methods of Raman spectroscopy, registration of action potentials and growth cones revealed the restoration of the physico-chemical state of the lipid bilayer and functional activity in the proximal segment of somatic nerves using insulin-like growth factor-1, which correlates with the data we obtained on the changes in the composition of the lipid fraction of damaged nerve conductors against the background of the drug action. We believe that insulin-like growth factor-1 is one of the factors of axonal regeneration and restoration of functioning of damaged nerve conductors, exerting its effect as a result of activation of phosphoinositide-specific phospholipase C and phosphatidylinositol-3-kinase signaling pathways.

About the authors

E. V Chudalkina

National Research Ogarev Mordovia State University

Email: mary.isakina@yandex.ru
Saransk, Russia

M. V Parchaykina

National Research Ogarev Mordovia State University

Saransk, Russia

I. D Molchanov

National Research Ogarev Mordovia State University

Saransk, Russia

E. S Revina

National Research Ogarev Mordovia State University

Saransk, Russia

A. V Zavarykina

National Research Ogarev Mordovia State University

Saransk, Russia

M. A Simakova

National Research Ogarev Mordovia State University

Saransk, Russia

I. P Grunyushkin

National Research Ogarev Mordovia State University

Saransk, Russia

V. V Revin

National Research Ogarev Mordovia State University

Saransk, Russia

References

  1. Adidharma W., Khouri A. N., Lee J. C., Vanderboll K., Kung T. A., Cederna P. S., and Kemp S.W. P. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. , , 384–396 (2022). doi: 10.1002/mus.27661
  2. Slavin B. R., Sarhan K. A., von Guionneau N., Hanwright P. J., Qiu C., Mao H. Q., Höke A., and Tuffaha S. H. Insulin-like growth factor-1: A promising therapeutic target for peripheral nerve injury. , , 695850 (2021). doi: 10.3389/fbioc.2021.695850
  3. Revin V. V., Nabokina S. M., Anisimova I. A., and Gruniushkin I. P. Activity of phosphoinositide-specific phospholipase C in rabbit nerves at rest and during stimulation. , (5), 815–820 (1996).
  4. Parchaykina M., Chudalkina E., Revina E., Molchanov I., Zavarykina A., Popkov E., and Revin V. The effect of insulin-like growth factor-1 on the quantitative and qualitative composition of phosphoinositide cycle components during the damage and regeneration of somatic nerves. , (4), 60 (2024). doi: 10.3390/scipharm92040060
  5. Roy D. and Tedeschi A. The role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and repair after CNS injury and disease. , (5), 1078 (2021). doi: 10.3390/cells10051078
  6. Bligh E. G. and Dyer W. J. A rapid method of total lipid extraction and purification. , (8), 911–917 (1959). doi: 10.1139/o59-099
  7. Прохорова М. И., Романова Л. С. и Туманова С. Ю. (Наука, М., 1967).
  8. Findlay J. B. C. and Howard Evans W. (IRL Press, 1987).
  9. Morrison W. R. and Smith L. M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. , , 600–608 (1964).
  10. Kuz’menko T. P., Parchaykina M. V., Revina E. S., Gladysheva M. Y., and Revin V. V. Influence of neurotrophic factors on the composition of proteins during damage and regeneration of somatic nerves. , , 334–348 (2023). doi: 10.31857/S0006302923020138
  11. Cocco L., Follo M. Y., Manzoli L., and Suh P. G. Phosphoinositide-specific phospholipase C in health and disease. , (10), 1853–1860 (2015). doi: 10.1194/jir.R057984
  12. Nelson T. J., Sun M. K., Hongpaisan J., and Alkon D. L. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. , (1), 76–87 (2008). doi: 10.1016/j.ejphar.2008.01.051
  13. Ревина Э. С., Девяткин А. А., Ревин В. В. и Громова Н. В. (Изд-во Мордов. ун-та, Саранск, 2012).
  14. Nuñez A., Zegarra-Valdivia J., Fernandez de Sevilla D., Pignatelli J., and Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. , (8), 3220–3230 (2023). doi: 10.1038/s41380-023-02136-6
  15. Britten-Jones A. C., Craig J. P., Anderson A. J., and Downie L. E. Association between systemic omega-3 polyunsaturated fatty acid levels and corneal nerve structure and function. . , 1866–1873 (2023). doi: 10.1038/s41433-022-02259-0
  16. Iqbal Z., Bashir B., Ferdousi M., Kalteniece A., Alam U., Malik R. A., and Soran H. Lipids and peripheral neuropathy. , (4), 249–257 (2021). doi: 10.1097/MOL.0000000000000770
  17. de Almeida Melo Maciel Mangueira M., Caparelli-Dáquer E., Filho O. P. G., de Assis D. S. F. R., Sousa J. K. C., Lima W. L., Pinheiro A. L. B., Silveira L. Jr., and Mangueira N. M. Raman spectroscopy and sciatic functional index (SFI) after low-level laser therapy (LLLT) in a rat sciatic nerve crush injury model. , (7), 2957–2971 (2022). doi: 10.1007/s10103-022-03565-5
  18. Guo Y., Sun L., Zhong W., Zhang N., Zhao Z., and Tian W. Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges. , (3), 663–670 (2024). doi: 10.4103/1673-5374.380909
  19. Morisaki S., Ota C., Matsuda K., Kaku N., Fujiwara H., Oda R., Ishibashi H., Kubo T., and Kawata M. Application of Raman spectroscopy for visualizing biochemical changes during peripheral nerve injury in vitro and in vivo. , (11), 116011 (2013). doi: 10.1117/1.JBO.18.11.116011
  20. Li R., Slipchenko M. N., Wang P., and Cheng J. X. Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat. , (4), 040502 (2013). doi: 10.1117/1.JBO.18.4.040502
  21. Forbes B. E., Blyth A. J., and Wit J. M. Disorders of IGFs and IGF-1R signaling pathways. , , 11035 (2020). doi: 10.1016/j.mce.2020.11035
  22. Dya G. A., Klychnikov O. I., Adasheva D. A., Vladychenskaya E. A., Katrukha A. G., and Serebryanaya D. V. IGF-Binding proteins and their proteolysis as a mechanism of regulated IGF release in the nervous tissue. , (S1), 105–122 (2023). doi: 10.1134/S0006297923140079
  23. Nieuwenhuis B. and Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. , (6), 1172–1182 (2022). doi: 10.4103/1673-5374.327324
  24. Wissessowapak C., Niyomchan A., Visimonthachai D., Leelaprachakul N., Watcharasit P., and Satayavivad J. Arsenic-induced IGF-1 signaling impairment and neurite shortening: The protective roles of IGF-1 through the PI3K/Akt axis. , (3), 1119–1128 (2024). doi: 10.1002/tox.23995

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences