Quenching with Oxygen of the Triplet State of Spheroiden in the Reaction Centers of C. sphaeroides in the Temperature Range 0–45°C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The efficiency of quenching with dissolved oxygen of the triplet state of the carotenoid spheroiden ([T]Car) in the photosynthetic reaction center of purple bacteria Cerebacter (Rhodobacter) sphaeroides in the temperature range from 0°C to +45°C was investigated. For the possibility of [T]Car formation during light excitation of the reaction center, o-phenanthroline (10[−][2] M) was added to the preparations, partially displacing the primary quinone acceptor from the structure of reaction center. The activation energies of the process of [T]Car quenching under normal aerobic conditions and with partial degassing of the studied samples were determined.

About the authors

P. P Knox

Lomonosov Moscow State University

Email: knox@biophys.msu.ru
Moscow, Russia

I. A Yaroshevich

Lomonosov Moscow State University

Moscow, Russia

E. P Lukashev

Lomonosov Moscow State University

Moscow, Russia

References

  1. Peterman E. J. G., Dukker F. M., van Grondelle R., and van Amerongen H. Chlorophyll a and carotenoid triplet states in light-harvesting complex 11 of higher plants. Biophys. J., 69, 2670 (1995). doi: 10.1016/S0006-3495(95)80138-4
  2. Mandal S., Carey A.-M., Locsin J., Gao B.-R., Williams J.-A. C., Allen J. P., Lin S., and Woodbury N. W. Mechanism of triplet energy transfer in photosynthetic bacterial reaction centers. J. Phys. Chem. B, 121, 6499-6510 (2017). doi: 10.1021/acs.jpcb.7b03373
  3. Sipka G. and Maroti P. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. Photosynth. Res., 136, 17 (2018). doi: 10.1007/s11120-017-0434-3
  4. Laible P. D., Morris Z. S., Thurnauer M. C., Schiffer M., and Hanson D. K. Inter- and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria. Photochem. Photobiol., 78 (2), 114 (2003). doi: 10.1562/0031-8655(2003)078-C0114:iaivie>2.0.co;2
  5. Marchanka A., Paddock M., Lubitz W., and van Gastel M. Low-temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides. Biochemistry, 46, 14782 (2007). doi: 10.1021/bi701593r
  6. Kirmaier C., Holten D., and Parson W. W. Temperature and detection-wavelength dependence of the picosecond electron transfer kinetics measured in Rhodopaeudomonas sphaeroides reaction centers—resolution of new spectral and kinetic components in the primary charge-separation process. Biochim. Biophys. Acta, 810, 33 (1985). doi: 10.1016/0005-2728(85)90204-X
  7. Holzapfel W., Finkele U., Kaiser W., Oesterhelt D., Scheer H., Stilz H. U., and Zinth W. Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem. Phys. Lett., 160, 1 (1989). doi: 10.1016/0009-2614(89)87543-8
  8. Holzwarth A. R. and Muller M. G. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry, 35, 11820 (1996). doi: 10.1021/bj9607012
  9. Šlouf V., Chábera P., Olsen J. D., Martin E. C., Qiac P., Huntec C. N., and Polivka T. Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc. Natl. Acad. Sci. USA, 109, 8570 (2012). doi: 10.1073/pnas.1201413109
  10. Пименова М. Н., Гречушкина Н. Н., Азова Л. Г., Семенова Е. В. и Мильникова С. И. Руководство к практическим занятиям по микробиологии (Изд-во МГУ, М., 1983).
  11. Захарова Н. И. и Чурбанова И. Ю. Методы получения реакционных центров фотосинтезирующих пурпурных бактерий. Биохимия, 65, 181 (2000).
  12. Okamura M. Y., Isaacson R. A., and Feher G. Primary acceptor in bacterial photosynthesis: Obligatory role of ubiquinone in photoactive reaction centre of Rhodopseudomonas spheroids. Proc. Natl. Acad. Sci. USA, 72, 3491 (1975). doi: 10.1073/pnas.72.9.3491
  13. Gibasiewicz K. and Pajzderska M. Primary radical pair PH lifetime in Rhodobacter sphaeroides with blocked electron transfer to Q. Effect of o-phenanthroline. J. Phys. Chem. B, 112, 1858 (2008). doi: 10.1021/jp075184j
  14. Gibasiewicz K., Pajzderska M., Ziólek M., Karolczak J., and Dobek A. Internal electrostatic control of the primary charge separation and recombination in reaction centers from Rhodobacter sphaeroides revealed by femtosecond transient absorption. J. Phys. Chem. B, 113, 11023 (2009). doi: 10.1021/jp811234q
  15. Bialek R., Burdzinski G., Jones M. R., and Gibasiewicz K. Bacteriophosphycin triplet state in Rhodobacter sphaeroides reaction centers. Photosynth. Res., 129, 205 (2016). doi: 10.1007/s11120-016-0290-6
  16. Oxanvya M. H., Oexep F. H. Henicon H. Peaxционные центры. B kti. Фотосинтез (Мир, М., 1987), т. 1, сс. 316-402.
  17. Frank H. A., Chadwick B. W., Taremi S., Kolaczkowski S., and Bowman M. K. Singlet and triplet absorption spectra of carotenoids bound in the reaction centers of Rhodopseudomonas sphaeroides R26. FEBS Lett., 203, 157 (1986). doi: 10.1016/0014-5793(86)80734-7
  18. Paschenko V. Z., Gorokhov V. V., Grishanova N. P., Goryacheva E. A., Korvatovsky B. N., Knox P. P., Zakharova N. I., and Rubin A. B. The influence of structural-dynamic organization of RC from purple bacterium Rhodobacter sphaeroides on picosecond stages of photoinduced reactions. Biochim. Biophys. Acta, 1364, 361 (1998). doi: 10.1016/s0005-2728(98)00012-7
  19. Tao Z., Goodisman J., and Souid A.-K. Oxygen measurement via phosphorescence: reaction of sodium dithionite with dissolved oxygen. J. Phys. Chem. A, 112, 1511 (2008). doi: 10.1021/jp710176z
  20. Schödel R., Irrgang K.-D., Voigt J., and Renger G. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys. J., 75, 3143 (1998). doi: 10.1016/S0006-3495(98)77756-2
  21. Siefermann-Harms D. and Angerhofer A. Evidence for an O-barrier in the light-harvesting chlorophyll-a/b-protein complex LHC II. Photosynth. Res., 55, 83 (1998). doi: 10.1023/A:1005951307673
  22. Sheu S.-Y., Yang D.-Y., Selzle H. L., and Schlag E. W. Energetics of hydrogen bonds in peptides. Proc. Natl. Acad. Sci. USA, 100, 12683 (2003). doi: 10.1073/pnas.2133366100
  23. Carrero J., Jameson D. M., and Gratton E. Oxygen penetration and diffusion into myoglobin revealed by quenching of zineprotoporphyrin IX fluorescence. Biophys. Chem., 54, 143 (1995). doi: 10.1016/0301-4622(94)00133-5
  24. Roszak A. W., McKendrick K., Gardiner A. T., Mitchell I. A., Isaacs N. W., Cogdell R. J., Hashimoto H., and Frank H. A. Protein regulation of carotenoid binding: gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure, 12, 765 (2004). doi: 10.1016/j.str.2004.02.037
  25. Popovos B. B., Гришанова Н. П., Нокс П. П., Пашенко В. З. и Ренгер Г. Возможное влияние структурного фазового перехода в реакционных центрах Rhodobacter sphaeroides на скорость темнового восстановления фотоокисленного бактериохлорафилла от первичного хинона. Биофизика, 48, 453 (2003).
  26. Справочник химика 21. Химия и химическая технология. URL: www.Chem21.info.
  27. Yaroshevich I. A., Krasilnikov P. M., and Rubin A. B. Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Comput. Theor. Chem., 1070, 27 (2015). doi: 10.1016/j.comptc.2015.07.016
  28. Ho J., Kish E., Méndez-Hernandez D. D., Wong Carter K., Pillai S., Kodis G., Niklas J., Poluektov O. G., Gust D., Moore T. A., Moore A. L., Batista V. S., and Robert B. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas. Proc. Natl. Acad. Sci. USA, 114 (28), E5513-E5521 (2017). doi: 10.1073/pnas.1614857114
  29. Laisk A., Peterson R. B., and Oja V. Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. Photosynth. Res., 160, 31 (2024). doi: 10.1007/s11120-024-01086-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences