Analysis of Competitive Ligand Binding to DNA: Using Dyes as Fluorescent Sensors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Determination of interaction parameters of low molecular weight compounds with DNA is difficult in cases where compounds do not exhibit appreciable fluorescence or their spectral changes are difficult to interpret. To solve this problem, an approach involving the use of known fluorescent dyes competitively binding on DNA is proposed. This approach uses a model describing the competitive binding of two extended ligands on a linear DNA matrix. This model allows approximation of experimental data and determination of binding parameters corresponding to two non-fluorescent types of ligands. The first type of ligands exhibits intercalation binding to DNA and competes with ethidium bromide, while the second type binds along a narrow groove and competes with Hoechst 33258 dye.

About the authors

Y. D Nechipurenko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Research Institute for Brain Development and Peak Performance, RUDN University

Email: nech99@mail.ru
Moscow, Russia; Moscow, Russia

E. A Novikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

N. M Smirnov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

K. K Khorunzheva

Moscow Institute of Physics and Technology (National Research University)

Dolgoprudny, Russia

B. V Paponov

Pavlov First Saint Petersburg State Medical University

Saint Petersburg, Russia

A. F Arutyunyan

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

D. N Kaluzhny

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: uzhny@mail.ru
Moscow, Russia

References

  1. Healy E. F. Quantitative determination of DNA–ligand binding using fluorescence spectroscopy. J. Chem. Education, 84 (8), 1304 (2007). doi: 10.1021/cd084p1304
  2. Zasedatelev A. S., Gursky G. V., Zimmer C. H., and Thrum H. Binding of netropin to DNA and synthetic polynucleotides. Mol. Biol. Reports, 1 (6), 337–342 (1974). doi: 10.1007/BF00309567
  3. del Villar-Guerra R., Gray R. D., Trent J. O., and Chaires J. B. A rapid fluorescent indicator displacement assay and principal component/cluster data analysis for determination of ligand–nucleic acid structural selectivity. Nucl. Acids Res., 46 (7), e41–e41 (2018). doi: 10.1093/nar/gkv019
  4. Tse W. C. and Boger D. L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Accounts Chem. Res., 37 (1), 61–69 (2004). doi: 10.1021/an030113y
  5. Domotor O., Binacchi F., Ribeiro N., Busto N., Gonzalez-Garcia J., Garcia-España E., Correia I., Enyedy E. A., Hamacek J., Terenzi A., Basilio N., Barone G., Cavaco I., and Biver T. How reliable is the evaluation of DNA binding constants? Insights and best practices based on an inter-laboratory fluorescence titration study. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 327, 125354 (2025). doi: 10.1016/j.saa.2024.125354
  6. Lepecq J. B. and Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids: Physical–chemical characterization. J. Mol. Biol., 27 (1), 87–106 (1967). doi: 10.1016/0022-2836(67)90353-1
  7. Bazhulina N. P., Nikitin A. M., Rodin S. A., Surowaya A. N., Kravatsky Y. V., Pismensky V. F., Archipova V. S., Martin R., and Gursky G. V. Binding of Hoechst 33258 and its derivatives to DNA. J. Biomol. Struct. Dyn., 26 (6), 701–718 (2009). doi: 10.1080/07391102.2009.10507283
  8. Haq I., Ladbury J. E., Chowdhry B. Z., Jenkins T. C., and Chaires J. B. Specific binding of hoechst 33258 to the d(CGCAAATTTCGCG)2 duplex: calorimetric and spectroscopic studies. J. Mol. Biol., 271 (2), 244–257 (1997). doi: 10.1006/jmbl.1997.1170
  9. Bradley D. and Lifson S. Statistical mechanical analysis of binding of acridines to DNA. In: Molecular associations in biology (Proc. Int. Symp. Held in Celebration of the 40th Anniversary of the Institute de Biology Physico-Chimique). Ed. by B. Pullman (Acad. Press, 2012), pp. 261–270. doi: 10.1016/B978-0-12-395638-5.50021-5
  10. Latt S. A. and Sober H. A. Protein-nucleic acid interactions. II. Oligopeptide–polythonucleotide binding studies. Biochemistry, 6 (10), 3293–306 (1967). doi: 10.1021/bt00862a040
  11. Crothers D. M. Calculation of binding isotherms for heterogeneous polymers. Biopolymers, 6 (4), 575–584 (1968). doi: 10.1002/bip.1968.360060411
  12. Заседателев А. С., Гурский Г. В. и Волькенштейн М. В. Теория одномерной адсорбции. I. Адсорбция малых молекул на гомополимере. Молекуляр. биология, 5 (2), 245–490 (1971).
  13. Нечипуренко Ю. Д. и Бучельников А. С. Связывание лигандов с нуклеиновыми кислотами в растворе и на микрочитах. Биофизика, 67 (3), 456–466 (2022). doi: 10.31857/S000630292203005X, EDN: ANDOHM
  14. McGhee J. D. and von Hippel P. H. Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol., 86 (2), 469–489 (1974). doi: 10.1016/0022-2836(74)90031-x
  15. Нечипуренко Ю. Д. Кооперативные взаимодействия при связывании протяженных лигандов с ДНК. II. Контактные кооперативные взаимодействия между адсорбированными лиганами. Молекуляр. биология, 18, 1066–1079 (1984).
  16. Nechipurenko Y. D. and Gursky G. V. Cooperative effects on binding of proteins to DNA. Biophys. Chem., 24 (3), 195–209 (1986).
  17. Нечипуренко Ю. Д. Анализ связывания биологически активных соединений с нуклеиновыми кислотами (ИКИ, Ижевск, 2015).
  18. Torralba A. S., Colmenarejo G., and Montero F. Sequence distribution and intercooperativity detection for two ligands simultaneously binding to DNA. Biopolymers, 58 (6), 562–576. doi: 10.1002/1097-0282(200105)586<562::AID-BIP1031>30.CO;2-8
  19. Nechipurenko Y. D., Mikheikin A. L., Streltsov S. A., Zasedatelev A. S., and Nabiev I. R. Mixed Mode of Ligand-DNA Binding Results in S-Shaped Binding Curves. J. Biomol. Struct. Dyn., 18 (5), 703–708 (2001). doi: 10.1080/07391102.2001.10506700
  20. Круглова, Е. Б. и Зиненко Т. Л. Экспериментальные и теоретические исследования образования комплексов ДНК с биологически активными лигандами, содержащими хромофорные группы, в зависимости от ионной силы раствора. Молекуляр. биология, 27 (3), 655–665 (1993).
  21. Schwarz G. and Stankowski S. Linear cooperative binding of large ligands involving mutual exclusion of different binding modes. Biophys Chem., 10 (2), 173–181 (1979). doi: 10.1016/0301-4622(79)85037-1
  22. Шульга С. И. и Чуйгук В. А. Полиметиновые красители из глазоло[3,2-а]пиримиллиненных пиримидо[2,1],–b]бентдиазолиевых солей. Укр. хим. журн., 39 (11), 1151–1155 (1973).
  23. Zhao Z. and Hartmann H. Synthesis of reactive condensation products of acetylacetone and their transformation into deeply coloured methine dyes. J. Prakt. Chem., 342 (3), 249–255 (2000). doi: 10.1002/(sici)1521-3897(200003)342:3<249::aid-prac249>3.0.co;2-8
  24. Monchaud D. and Teulade-Fichou M.-P. G4-FID: A fluorescent DNA probe displacement assay for rapid evaluation of quadruplex ligands. Methods Mol. Biol., 608, 257–271 (2010). doi: 10.1007/978-1-59745-363-9_15

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences