Improvement of the process of cryopreservation of cattle sperm with molecular hydrogen

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The effect of molecular hydrogen on the functional parameters of bovine sperm cells has been studied. The influence of molecular hydrogen on motility, ATP content, oxidative processes, viability and morphology of the acrosome in bull spermatozoa has been studied. The study was performed on sperm production of black-and-white cattle. The sperm was diluted with a sterile BioXcell medium (France). To analyze the effect of molecular hydrogen on bull spermatozoa, molecular hydrogen was added to the BioXcell medium. The analyzed parameters were studied in native sperm diluted with BioXcell medium, in sperm after deep freezing, as well as sperm subjected to deep freezing and pretreatment with molecular hydrogen. The addition of molecular hydrogen to the medium for diluting sperm contributed to an increase in cell mobility, increased energy metabolism and reduced oxidative stress of spermatozoa. The results obtained showed the need for an in-depth study of the effect of molecular hydrogen on the qualitative characteristics of sperm in cattle and, on this basis, to clarify the existing technological regulations for seed conservation.

全文:

受限制的访问

作者简介

M. Ivashchenko

National Research Nizhny Novgorod State University named after N.I. Lobachevsky; Nizhny Novgorod State Agrotechnological University named after L.I. Florentyev

编辑信件的主要联系方式.
Email: kafedra2577@mail.ru

PhD in Biological Sciences

俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

A. Deryuginа

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: kafedra2577@mail.ru

Grand PhD in Biological Sciences

俄罗斯联邦, Nizhny Novgorod

А. Belov

National Research Nizhny Novgorod State University named after N.I. Lobachevsky; Nizhny Novgorod State Agrotechnological University named after L.I. Florentyev

Email: kafedra2577@mail.ru

PhD in Biological Sciences

俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod

М. Latushko

Production Association “Ural Optical and Mechanical Plant” named after E.S. Yalamov

Email: kafedra2577@mail.ru

PhD in Technical Sciences

俄罗斯联邦, Yekaterinburg

P. Ignatiev

Production Association “Ural Optical and Mechanical Plant” named after E.S. Yalamov

Email: kafedra2577@mail.ru

PhD in Physical and Mathematical Sciences

俄罗斯联邦, Yekaterinburg

参考

  1. Vinogradova I.L. Metod odnovremennogo opredeleniya 2,3 DFG i ATF v eritrocitah // Laboratornoe delo. 1980. № 7. S. 424 –426.
  2. Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskih membranah. M.: Nauka, 1972. 252 s.
  3. Deryugina A.V., Ivashchenko M.N., Lodyanoj M.S. Ocenka rezistentnosti membran spermatozoidov bykov v processe dolgosrochnogo hraneniya // Estestvennye i tekhnicheskie nauki. 2022. T. 1 (164). S. 107–109.
  4. Nacional’naya tekhnologiya zamorazhivaniya i ispol’zovaniya spermy plemennyh bykov-proizvoditelej / pod red. A.I. Abilova, N.M. Reshetnikovoj. M.: 2008. 160 s.
  5. Piskarev I.M., Ivanova I.P., Samodelkin A.G., Ivashchenko M.N. Iniciirovanie i issledovanie svobodno-radikal’nyh processov v biologicheskih eksperimentah. Nizhnij Novgorod, 2016. 106 s.
  6. Rahmanin Yu.A., Egorova N.A., Mihajlova R.I. Molekulyarnyj vodorod: biologicheskoe dejstvie, vozmozhnosti primeneniya v zdravoohranenii (obzor) // Gigiena i sanitariya. 2019. T. 98. № 4. S. 359–365.
  7. Hyshiktuev B.S., Hyshiktueva N.A., Ivanov V.N. Metody opredeleniya produktov perekisnogo okisleniya lipidov v kondensate vydyhaemogo vozduha i ih klinicheskoe znachenie // Klinicheskaya laboratornaya diagnostika. 1996. № 3. S. 13–15.
  8. Aitken R., Gibb Z., Mitchell L. et al. Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols // Biol Reprod. 2012. V. 87(5). PP. 110. https://doi.org/10.1095/biolreprod. 112.102020.
  9. Bailey J.L., Bilodeau J.F., Cormier N. Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon // J. Androl. 2000. V. 21. PP. 1–7. https://doi.org/10.1002/j.1939-4640.2000.tb03268.x
  10. Bailey J., Morrier A., Cormier N. Semen cryopreservation: successes and persistent problems in farm species // Can J. Anim Sci. 2003. V. 83. PP. 393–401. https://doi.org/10.4141/A03-024
  11. Bjelakovic G., Nikolova D., Gluud L. et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases // Cochrane Database Syst. Rev. 2012. V. 3. CD007176.
  12. Grötter L.G., Cattaneo L., Estela P. et al. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post–thaw quality optimization // Reprod Domest Anim. 2019. V. 54. P. 655–665. https://doi.org/10.1111/rda.13409
  13. Finkel T., Holbrook N. Oxidants, oxidative stress and the biology of ageing // Nature. 2000. V. 408 (6809). PР. 239–247.
  14. Kimura H. Hydrogen sulfide: from brain to gut // Antioxid. Redox Signal. 2010. V. 12 (9). PР. 1111–1123.
  15. Kumar A., Prasad J.K., Srivastava N., Ghosh S.K. Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa // Biopreserv Biobank. 2019. V. 17. P. 603–612. https://doi.org/10.1089/bio.2019.0037
  16. Liu G.-D., Zhang H., Wang L. Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells // Int. J. Ophtalmol. 2013. V. 6. № 3. PР. 280–285.
  17. McQueen D.B., Zhang J., Robins J.C. Sperm DNA fragmentation and recurrent pregnancy loss: A systematic review and meta-analysis // Fertil. Steril. 2019. № 112. РР. 54–60. https://doi.org/10.1016/j.fertnstert.2019.03.003
  18. Sato Y., Kajiyama S., Amano A. Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-dependent SMP30/GNL knockout mice // Biochem. Biophys. Res. Commun. 2008. V. 375. № 3. PР. 346–350.
  19. Smith R., Murphy M. Mitochondria-targeted antioxidants as therapies // Discov. Med. 2011. V. 11 (57). PР. 106–114.
  20. Ohsawa I., Ishikawa M., Takahashi K. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals // Nat. Med. 2007. V. 13. № 6. PР. 688–694.
  21. Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine // Pharmacol. Ther. 2014. V. 144. № 1. PР. 1–11.
  22. Xie K., Yu Y., Pei Y., Hou L. Protective effects of hydrogen gas on murine polymicrobal sepsis via reducing oxidative stress and HMGB1 release // Shock. 2010. V. 34. № 1. PР. 90–97.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可