Thermodynamics of Interaction between Poly(perfluorosulfonic acid) Nafion and Water

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The thermodynamics of interaction between poly(perfluorosulfonic acid) Nafion and water is studied by isothermal sorption and microcalorimetry. The concentration dependences of energy and entropy parameters of mixing of Nafion aqueous solutions are determined. It is shown that the Gibbs energy and the enthalpy of mixing are negative while the entropy of mixing is positive over the entire range of solution compositions. The experimental water sorption isotherms and the concentration dependences of the enthalpy of dilution of aqueous solutions are analyzed in terms of the thermodynamic model allowing for pair nonvalence interactions in solution, nonequilibrium glassy structure of the polymer, and effects of the dissociation of ionic sulfo groups of Nafion. The calculated value of the Flory–Huggins parameter is 1.48, and the value of its enthalpy component is close to zero.

作者简介

S. Chernyuk

Ural Federal University named after the first President of Russia B. N. Eltsin; Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia; 620049, Yekaterinburg, Russia

A. Safronov

Ural Federal University named after the first President of Russia B. N. Eltsin; Institute of Electrophysics, Urals Branch, Russian Academy of Sciences

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia; 620016, Yekaterinburg, Russia

L. Adamova

Ural Federal University named after the first President of Russia B. N. Eltsin

Email: univerekb@mail.ru
620020, Yekaterinburg, Russia

O. Bushkova

Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences; Institute of Problems of Chemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: univerekb@mail.ru
620049, Yekaterinburg, Russia; 142432, Chernogolovka, Moscow oblast, Russia

参考

  1. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987.
  2. Kim J., Yamasaki K., Ishimoto H., Takata Y. // Polymers. 2020. V. 1. № 3. P. 1730.
  3. Mazzapioda L., Lo Vecchio C., Danyliv O., Baglio V., Martinelli A., Navarra M. A. // Polymers. 2020. V. 12. № 3. P. 2019.
  4. Haubold H.G., Vad T., Jungbluth H., Hiller P. // Electrochim. Acta. 2001. V. 46. № 10. P. 1559–1563.
  5. Yeager H.L., Eisenberg A. // ACS Symp. Ser. Washington: ACS, 1982. V. 180. Ch. 4. P. 41.
  6. Schmidt-Rohr K., Chen Q. // Nature Mater. 2008. V. 7. P. 75.
  7. Ivanova N.A., Spasov D.D., Grigoriev S.A., Fateev V.N. // Polymers. 2022. V. 14. № 20. P. 4395.
  8. Thampan T., Malhotra S., Tang H., Datta R. // J. Electrochem. Soc. 2000. V. 147. № 9. P. 3242.
  9. Morris D.R., Sun X. // J. Appl. Polym. Sci. 1993. V. 50. № 8. P. 1445.
  10. Pineri M., Volino F., Escoubes M. // J. Polym. Sci., Polym. Phys. 1985. V. 23. № 10. P. 2009.
  11. Zawodzinski T.A., Springer T.E., Davey J., Jestel R., Lopez C., Valerio J., Gottesfeld S. // J. Electrochem. Soc. 1993. V. 140. № 7. P. 1981.
  12. Laporta M., Pegoraro M., Zanderighi L. // Polym. Chem. Chem. Phys. 1999. V. 1. № 19. P. 4619.
  13. Zawodzinski T.A., Derouin C., Radzinski S., Sherman R.J., Smith V.T., Springer T.E., Gottesfeld S. // J. Electrochem. Soc. 1993. V. 140. № 4. P. 1041.
  14. James P.J., Elliott J.A., McMaster T.J., Newton J.M., Elliott A.M., Hanna S., Miles M.J. // J. Mater. Sci. 2000. V. 35. № 20. P. 5111.
  15. Hinatsu J.T., Mizuhata M., Takenaka H. // J. Electrochem. Soc. 1994. V. 141. № 6. P. 1493.
  16. Vallieres C., Winkelmann D., Roizard D., Favre E., Scharfer P., Kind M. // J. Membr. Sci. 2006. V. 278. № 1–2. P. 357.
  17. Choi P., Datta R. // ACS Div. Fuel Chem. Prepr. 2003. V. 48. № 1. P. 300.
  18. Weber A.Z., Newman J. // J. Electrochem. Soc. A 2004. V. 151. № 2. P. 311.
  19. Reucroft P.J., Rivin D., Schneider N.S. // Polymer. 2002. V. 43. № 19. P. 5157.
  20. Benoit R.L., Figeys D. // Can. J. Chem. 1991. V. 69. № 12. P. 1985.
  21. Noppel M. // J. Geophys. Res.: Atmospheres. 2000. V. 105. № 15. P. 19779.
  22. Newsham D.M.T., Mendez-Lecanda E.J. // J. Chem. Thermodyn. 1982. V. 14. № 3. P. 291.
  23. Ostrovskii V.E., Gostev B.V. // J. Therm. Anal. 1996. V. 46. № 2. P. 397.
  24. Kusoglu A., Savagatrup S., Clark K.T., Weber A.Z. // Macromolecules. 2012. V. 45. № 18. P. 7467.
  25. Kim M.H., Glinka C.J., Grot S.A., Grot W.G. // Macromolecules. 2006. V. 39. № 14. P. 4775.
  26. Shi S.W., Dursch T.J., Blake C., Mukundan R., Borup R.L., Weber A.Z., Kusoglu A. // J. Polym. Sci., Polym. Phys. 2016. V. 54. № 5. P. 570.
  27. Li J.S., Yang X., Tang H.L., Pan M. // J. Membr. Sci. 2010. V. 361. № 1–2. P. 38.
  28. Safronov A.P., Adamova L.V. // Polymer Science A. 2002. V. 44. № 4. P. 408.
  29. Safronov A.P., Terziyan T.V. // Polymer Science A. 2008. V. 50. № 7. P. 733.
  30. Yeo R.S. // Polymer. 1980. V. 21. № 4. P. 432.
  31. Mourey T.H., Slater L.A., Galipo R.C., Koestner R.J. // J. Chromatogr. A. 2011. V. 1218. № 34. P. 5801.
  32. Чалых А.Е., Герасимов В.К., Чертков В.Г. // Высокомолек. соед. Б. 1994. Т. 36. № 12. С. 2077.
  33. Тагер А.А. Физико-химия полимеров. М.: Рипол Классик, 1978.
  34. Safronov A.P., Adamova L.V., Blokhina A.S., Kamalov I.A., Shabadrov P.A. // Polymer Science A. 2015. V. 57. № 1. P. 33.
  35. Chu D., Tryk D., Gervasio D., Yeager E.B. // J. Electroanal. Chem. 1989. V. 272. № 1–2. P. 277.
  36. Choi P., Jalani N.H., Datta R. // J. Electrochem. Soc. 2005. V. 152. № 3. E123.
  37. Wang D., Cornelius C.J. // J. Polym. Sci., Polym. Phys. 2017. V. 55. № 5. P. 435.
  38. Shinoda K. // J. Phys. Chem. 1977. V. 81. № 13. P. 1300.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (27KB)
3.

下载 (61KB)
4.

下载 (84KB)
5.

下载 (42KB)
6.

下载 (75KB)
7.

下载 (162KB)

版权所有 © С.Д. Чернюк, А.П. Сафронов, Л.В. Адамова, О.В. Бушкова, 2023