Device for determining the contour of the visible area of optical elements (contourograph)
- 作者: Artuhov А.I.1, Glushkov E.I.1, Mikhailenko M.S.1, Pestov A.E.1, Petrakov E.V.1, Polkovnikov V.N.1, Chernyshev А.K.1, Chkhalo N.I.1, Shaposhnikov R.A.1
-
隶属关系:
- Institute for Physics of Microstructures RAS
- 期: 编号 4 (2025)
- 页面: 28-36
- 栏目: Articles
- URL: https://rjraap.com/1028-0960/article/view/689145
- DOI: https://doi.org/10.31857/S1028096025040048
- EDN: https://elibrary.ru/FBVUXP
- ID: 689145
如何引用文章
详细
This work presents a device for determining the contour of the visible area of optical elements (contourograph), designed for precise correlation of the coordinates of the visible area of the optical part with its physical dimensions. The developed device ensures the determination of the coordinates of the processed surface with an accuracy of ± 2.5 μm, which is necessary for high-precision ion beam processing. The contourograph is capable of outlining objects of arbitrary shape, including curved ones, as well as the contours of objects oriented at arbitrary angles relative to the linear motorized translators of the device. The high accuracy of determining the position of the processed surface directly affects the quality of ion beam processing, which allows for significant improvement in the characteristics of the optical element and, consequently, the optical system as a whole. During the work, the contourograph was successfully applied in the manufacturing of a substrate for the element of a two-mirror monochromator for station 1-1 “Microfocus” of the 4th generation synchrotron “SKIF” (Novosibirsk, Russia), demonstrating its practical significance and efficiency. By using the contourograph, an optical surface with the required characteristics was achieved, with the root mean square deviation of the surface reduced by 25 times — from the initial 25.7 nm to 1.0 nm.
全文:

作者简介
А. Artuhov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodE. Glushkov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodM. Mikhailenko
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodA. Pestov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodE. Petrakov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodV. Polkovnikov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodА. Chernyshev
Institute for Physics of Microstructures RAS
编辑信件的主要联系方式.
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodN. Chkhalo
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny NovgorodR. Shaposhnikov
Institute for Physics of Microstructures RAS
Email: chernyshev@ipmras.ru
Институт физики микроструктур РАН
俄罗斯联邦, Nizhny Novgorod参考
- Hoffman C., Giallorenzi T.G., Slater L.B. // Appl. Opt. 2015. V. 54. N. 31. P. F268. https://www.doi.org/10.1364/AO.54.00F268
- Ахсахалян А.Д., Клюенков Е.Б., Лопатин А.Я., Лучин В.И., Нечай А.Н., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Свечников М.В., Торопов М.Н., Цыбин Н.Н., Чхало Н.И., Щербаков А.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 1. С. 5. https://www.doi.org/10.7868/s0207352817010048
- Wagner Ch., Harned N. // Nature Photon. 2010. V. 4. N. 1. P. 24. https://www.doi.org/10.1038/nphoton.2009.251
- Born M., Wolf E. // Principles of Optics (Cambridge University). 1999. Sec. 9.3. P. 528.
- Chkhalo N.I., Kaskov I.A., Malyshev I.V., Mikhaylenko M.S., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Zabrodin I.G. // Precis. Eng. 2017. V. 48. P. 338. https://www.doi.org/10.1016/j.precisioneng.2017.01.004
- Wilson S.R., Reicher D.W., McNeil J.R. // Proc. SPIE. 1988. V. 966. P. 74. https://www.doi.org/10.1117/12.948051
- Weiser M. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. № 8–9. P. 1390. https://www.doi.org/10.1016/j.nimb.2009.01.051
- Wilson S.R., McNeil JR. // Proc. SPIE. 1987. V. 818. P. 320. https://www.doi.org/10.1117/12.978903
- Mikhailenko M.S., Pestov A.E., Chkhalo N.I., Goncharov L.A., Chernyshev A.K., Zabrodin I.G., Kaskov I.A., Krainov P.V., Astakhov D.I., Medvedev V.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1010. P. 165554. https://www.doi.org/10.1016/j.nima.2021.165554
- Lu Y., Xie X., Zhou L., Dai Z., Chen G. // Appl. Opt. 2017. V. 56. № 2. P. 260. https://www.doi.org/10.1364/AO.56.000260
- Bauer J., Ulitschka M., Pietag F., Arnold T. // J. Astron. Telesc. Instrum. Syst. 2018. V. 4. № 4. P. 046003. https://www.doi.org/10.1117/1.JATIS.4.4.046003
- Petrakov E.V., Glushkov E.I., Chernyshev A.K., Chkhalo N.I. // Opt. Eng. 2024. V. 63. № 11. P. 114104. https://doi.org/10.1117/1.OE.63.11.114104
- Chernyshev A., Chkhalo N., Malyshev I., Mikhailenko M., Pestov A., Pleshkov R., Smertin R., Svechnikov M., Toropov M. // Precis. Eng. 2021. V. 69. P. 29. https://www.doi.org/10.1016/j.precisioneng.2021.01.006
- Xie L., Tian Y., Shi F., Guo S., Zhou G. // J. Mater. Process. Technol. 2024. V. 327. P. 118341. https://www.doi.org/10.1016/j.jmatprotec.2024. 118341
- Антюшин Е.С., Ахсахалян А.А., Зуев С.Ю., Лопатин А.Я., Малышев И.В., Нечай А.Н., Перекалов А.А., Пестов А.Е., Салащенко Н.Н., Торопов М.Н., Уласевич Б.А., Цыбин Н.Н., Чхало Н.И., Соловьев А.А., Стародубцев М.В. // ЖТФ. 2022. Т. 92. № 8. С. 1202. https://www.doi.org/10.21883/JTF.2022.08.52784.80-22
- Chkhalo N.I., Malyshev I.V., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Soloviev A.A. // Appl. Opt. 2016. V. 55. P. 619. https://www.doi.org/10.1364/AO.55.000619
- Kuzin S., Bogachev S., Pertsov A., Loboda I., Chervinsky V., Chkhalo N., Lopatin A., Malyshev I., Pestov A., Pleshkov R., Polkovnikov V., Toropov M., Tsybin N., Zuev S. // Appl. Opt. 2023. V. 62. P. 8462. https://www.doi.org/10.1364/AO.501437
- Артюхов А.И., Морозов С.С., Петрова Д.В., Чхало Н.И., Шапошников Р.А. // ЖТФ. 2024. Т. 94. № 8. С. 1295. https://www.doi.org/10.61011/JTF.2024.08.58557.165-24
- Apache NetBeans (2024) The Apache Software Foundation. https://netbeans.apache.org/front/main/index.html
- Java programming language (2024) Oracle Corporation, USA. https://www.oracle.com/java/
- Swing Package (2024) Oracle Corporation, USA. https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/javax/swing/package-summary.html
- Glushkov E.I., Malyshev I.V., Petrakov E.V., Chkhalo N.I., Khomyakov Yu.V., Rakshun Ya.V., Chernov V.A., Dolbnya I.P. // J. Surf. Invest: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 233. https://www.doi.org/10.1134/S1027451023070133
- Chernov V.A., Bataev I.A., Rakshun Y.V., Khomyakov Y.V., Gorbachev M.V., Trebushinin A.E., Chkhalo N.I., Krasnorutskiy D.A., Naumkin V.S., Sklyarov A.N., Mezentsev N.A., Korsunsky A.M., Dolbnya I.P. // Rev. Sci. Instrum. 2023. V. 94 P. 013305. https://www.doi.org/10.1063/5.0103481
- Забродин И.Г., Зорина М.В., Каськов И.А., Малышев И.В., Михайленко М.С., Пестов А.Е., Салащенко Н.Н., Чернышев А.К., Чхало Н.И. // ЖТФ. 2020. Т. 90. № 11. С. 1922. https://www.doi.org/10.21883/JTF.2020.11.49985.112-20
补充文件
