Quantum Chemical Study of Organic Reactions Mechanisms. XIII. The Reaction of Propargyl Chloride with Potassium 1,2-Ethandithiolate in the System Hydrazine Hydrate–KOH: Heterocyclization Paths

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Quantum chemical modeling of the mechanism of interaction of propargyl chloride with potassium 1,2-ethanedithiolate in the hydrazine hydrate–KOH system was carried out using the combined approach CCSD(T)/6-31+G*//B3LYP/6-311++G**. The elementary stages of the reaction and possible routes for the heterocyclization of the initial intermediates have been found. Under experimental conditions at a reaction temperature of 40-42°C, 6 hours, 2-methyl-5,6-dihydro-1,4-dithiine was obtained with a yield of 25% and 4,7-dithiadecadiine-2,8 with a yield of 24%. At a temperature of –10 ÷ –15°С, cyclic products are not formed.

全文:

受限制的访问

作者简介

E. Chirkina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences; Angarsky State Technical University, ul. Chaikovskogo

编辑信件的主要联系方式.
Email: chirkina_ea@mail.ru
ORCID iD: 0000-0002-1733-0685
俄罗斯联邦, Favorskogo, 1, Irkutsk, 664033; ul. Chaikovskogo, 60, Angarsk, 665835

V. Grabelnykh

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: chirkina_ea@mail.ru
ORCID iD: 0000-0003-1067-7755
ul. Favorskogo, 1, Irkutsk, 664033

N. Korchevin

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences; Angarsky State Technical University, ul. Chaikovskogo

Email: chirkina_ea@mail.ru
Scopus 作者 ID: 0000-0001-5729-9080
Favorskogo, 1, Irkutsk, 664033; ul. Chaikovskogo, 60, Angarsk, 665835

L. Krivdin

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences; Angarsky State Technical University, ul. Chaikovskogo

Email: chirkina_ea@mail.ru
ORCID iD: 0000-0003-2941-1084
俄罗斯联邦, Favorskogo, 1, Irkutsk, 664033; ul. Chaikovskogo, 60, Angarsk, 665835

I. Rosenzweig

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: chirkina_ea@mail.ru
ORCID iD: 0000-0001-7817-7816
俄罗斯联邦, , ul. Favorskogo, 1, Irkutsk, 664033

参考

  1. Chirkina E.A., Grabelnykh B.A., Korchevin H.A., Krivdin L.B., Ushakov I.A., Rozentsveig I.B. Structural Chemistry, 2023, 34, 2263–2272. doi: 10.1007/s11224-023-02199-9
  2. Levanova E.P., Grabelnykh V.A., Vahrina V.S., Albanov A.I., Klyba L.V., Russavskaya N.V., Korchevin N.A., Rozentsveig I.B. J. Sulfur Chem. 2014, 35, 179–187. doi: 10.1080/17415993.2013.849704
  3. Becke A.D. J. Chem. Phys. 1993, 98, 5648-5652. doi: 10.1063/1.464913
  4. Lee C., Yang W., Parr R.G. Phys. Rev. B 1988, 37, 785-789. doi: 10.1103/PhysRevB.37.785
  5. Леванова Е.П., Никонова В.С., Грабельных В.А., Руссавская Н.В., Албанов А.И., Розенцвейг И.Б., Корчевин Н.А. ЖОрХ. 2016, 52, 540–541. [Levanova E.P., Nikonova V.S., Grabelnykh V.A., Russavskaya N.V., Albanov A.I., Rozentsveig I.B., Korchevin N.A. Russ. J. Org. Chem. 2016, 52, 615–623. doi: 10.1134/S1070428016050018
  6. Gaussian 09, Revision C.01, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G. A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., and Fox D.J., Gaussian, Inc., Wallingford CT, 2009.
  7. Хусайнов З.К., Ойматова Х.Х., Сафаров М.М., Тургунбоев М.Т. Вестник Таджикского нац. универ. Сер. естеств. наук. 2019, 2, 196–203.
  8. Современные методы органического синтеза. Ред. Т.В. Мандельштам, Б.В. Иоффе, Ю.П. Арцыбашева. Ленинград, 1980.
  9. Berne B.J., Tuckerman M., Martyna G. J. Chem. Phys. 1991, 94, 6811. doi: 10.1063/1.460259
  10. González C., Schlegel H.B. J. Phys. Chem. 1990, 94, 5523–5527. doi: 10.1021/j100377a021
  11. González C., Schlegel H.B. J. Chem. Phys. 1991, 95, 5853. doi: 10.1063/1.461606

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Energy profile of the reaction of propargyl chloride (1) with 1,2-ethanedithiolate (2) in the N2H4⋅H2O-KOH system, leading to the formation of heterocycles 3-6. The total energy of reactants 1 and 2 is taken as 0.0 kcal/mol.

下载 (222KB)
3. Fig. 2. Spatial structure of the pre-reaction complex PRC-1, transition states TS-1–TS-4, intermediates IC-1, IC-2 and final products 5, 6 optimized by the B3LYP/6-311++G(d,p) method [3, 4]. Here and in Fig. 3, 6: bond lengths and interatomic distances are given in Å, valence angles are in degrees. The value of the imaginary vibrational frequency of the transition state is given in brackets.

下载 (386KB)
4. Fig. 3. Spatial structure of transition states TS-5–TS-9, intermediate compound IC-3, prereaction complex PRC-2 and reaction products 3, 4, optimized by the B3LYP/6-311++G(d,p) method [3, 4]

下载 (384KB)
5. Fig. 4. Energy profile of the reaction of propargyl chloride (1) with 1,2-ethanedithiolate (2) in the N2H4⋅H2O-KOH system, leading to the formation of heterocycle 3. The total energy of reactants 1 and 2 is taken as 0.0 kcal/mol.

下载 (136KB)
6. Fig. 5. Energy profile of the reaction of 1-chloropropadiene-1,2 1a with 1,2-ethanedithiolate 2 in the N2H4⋅H2O-KOH system, leading to the formation of heterocycle 5. The total energy of the reactants 1a and 2 is taken as 0.0 kcal/mol.

下载 (113KB)
7. Fig. 6. Spatial structure of the initial reagents 1, 1a, pre-reaction complex PRC-3, transition states TS-10–TS-13 and intermediate compounds IC-4, IC-5, optimized by the B3LYP/6-311++G(d,p) method [3, 4].

下载 (379KB)
8. Scheme 1

下载 (58KB)
9. Scheme 2

下载 (58KB)
10. Scheme 3

下载 (37KB)
11. Scheme 4

下载 (72KB)
12. Scheme 5

下载 (95KB)
13. Scheme 6

下载 (116KB)
14. Scheme 7

下载 (86KB)
15. Scheme 8

下载 (79KB)
16. Scheme 9

下载 (102KB)
17. Figure from Contents

下载 (53KB)

版权所有 © Russian Academy of Sciences, 2025