Effect of manganese or copper on catalytic properties of CeO2-SiO2 in the preferential oxidation of CO in excess of hydrogen (PROX-СО)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is directed to identifying the effect of copper or manganese oxide additives on the catalytic properties of the CeO2–SiO2 (CeSi) system containing silicon dioxide as a textural promoter in the preferential oxidation of carbon monoxide in excess hydrogen (PROX-CO). The CeSi catalyst was prepared by precipitation from salts in the presence of cetyltrimethylammonium bromide template, 5 wt % MnOx/CeSi and 5 wt % CuOх/CeSi were obtained by precipitation of modifiers from salts in the presence of potassium carbonate. The catalytic efficiency in PROX-CO increases in the series CeSi > Mn/CeSi > Cu/CeSi (at 200°C the time-averaged CO conversion values are 5, 19 and 78%, CO2 selectivity values are 100, 65 and 59%). Characterization by X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction with hydrogen demonstrated, that the presence of SiO2 promotes the formation of highly dispersed and easily reduced CuOx clusters in close contact with CeO2 particles, uniformly distributed over CeSi, and containing Cu+ adsorption centers. The Mn/CeSi system is characterized by an uneven distribution of manganese on the surface, a low number of MnOx-CeO2 contacts, and a low reduction ability of MnOx in the low-temperature range (50–100°C).

作者简介

I. Kaplin

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-5091-6290

PhD, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

E. Boltkov

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com

student, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

L. Efimenko

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com

student, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

E. Lokteva

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0003-3510-4822

Doctor of Chemical Sciences, Associate Professor, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

O. Isaikina

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-4165-6562

PhD, Associate Professor, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

K. Maslakov

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-0672-2683

PhD, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

A. Kamaev

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-6648-0647

Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

E. Golubina

Lomonosov Moscow State University

Email: kaplinigormsu@gmail.com
ORCID iD: 0000-0002-1040-1428

Doctor of Chemical Sciences, Associate Professor, Chemistry Department

俄罗斯联邦, Leninskie Gory, 1, building 3, Moscow, 119991

参考

  1. Hassan Q., Sameen A.Z., Salman H.M., Jaszczur M., Al-Jiboory A.K. // J. Energy Storage. 2023. V. 72. P. 108404.
  2. Rolo I., Costa V.A.F., Brito F.P. // Energies. 2023. V. 17. № 1. P. 180.
  3. Hjeij D., Biçer Y., Koç M. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 4977.
  4. Wang K., Men Y., Liu W., Zhang J. // Int. J. Hydrogen Energy. 2023. V. 48. № 64. P. 25100.
  5. Lu J., Wang J., Zou Q., He D., Zhang L., Xu Z., He S., Luo Y. // ACS Catal. 2019. V. 9. № 3. P. 2177.
  6. Kaplin I.Y., Lokteva E.S., Maslakov K.I., Tikhonov A.V., Kharlanov A.N., Fionov A.V., Kamaev A.O., Isaikina O.Y., Maksimov S.V., Golubina E.V. // Appl. Surf. Sci. 2022. V. 594. P. 153473.
  7. Davó-Quiñonero A., Bailón-García E., López-Rodríguez S., Juan-Juan J., Lozano-Castelló D., García-Melchor M., Herrera F.C., Pellegrin E., Escudero C., Bueno-López A. // ACS Catal. 2020. V. 10. № 11. P. 6532.
  8. Chen Y., Lin J. // Int. J. Hydrogen Energy. 2023. V. 48. № 64. P. 24788.
  9. Sahebdelfar S., Ravanchi M.T. // Int. J. Hydrogen Energy. 2023. V.48. № 64. P. 24709.
  10. Montini T., Melchionna M., Monai M., Fornasiero P. // Chem. Rev. 2016. V. 116. № 10. P. 5987.
  11. Konsolakis M. // Appl. Catal. B: Environ. 2016. V. 198. P. 49.
  12. Ayastuy J.L., Gurbani A., González-Marcos M.P., Gutiérrez-Ortiz M.A. // Int. J. Hydrogen Energy. 2010. V. 35. № 3. P. 1232.
  13. Guo X., Li J., Zhou R. // Fuel. 2016. V. 163. P. 56.
  14. Maciel C.G., Silva T.D.F., Hirooka M.I., Belgacem M.N., Assaf J.M. // Fuel. 2012. V. 97. P. 245.
  15. Tang C., Sun J., Yao X., Cao Y., Liu L., Ge C., Gao F., Dong L. // Appl. Catal. B: Environ. 2014. V. 146. P. 201.
  16. Golubina E.V., Kaplin I.Y., Gorodnova A.V., Lokteva E.S., Isaikina O.Y., Maslakov K.I. // Molecules. 2022. V. 27. № 18. P. 6095.
  17. Galtayries A., Sporken R., Riga J., Blanchard G., Caudano R. // J. Electron Spectros. Relat. Phenomena. 1998. V. 88–91. P. 951.
  18. Lee S.Y., Mettlach N., Nguyen N., Sun Y.M., White J.M. // Appl. Surf. Sci. 2003. V. 206. № 1–4. P. 102.
  19. Abi-aad E., Bechara R., Grimblot J., Aboukais A. // Chem. Mater. 1993. V. 5. № 6. P. 793.
  20. Mullins D.R., Overbury S.H., Huntley D.R. // Surf. Sci. 1998. V. 409. № 2. P. 307.
  21. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. № 1. P. 24.
  22. Wan J., Tao F., Shi Y., Shi Z., Liu Y., Wu G., Kan J., Zhou R. // Chem. Eng. J. 2022. V. 433. № 3. P. 133.
  23. Schmitt R., Nenning A., Kraynis O., Korobko R., Frenkel A.I., Lubomirsky I., Haile S.M., Rupp J.L.M. // Chem. Soc. Rev. 2020. V. 49. № 2. P. 554.
  24. Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B. Struct. Crystallogr. Cryst. Chem. 1969. V. 25. № 5. P. 925.
  25. McBride J.R., Hass K.C., Poindexter B.D., Weber W.H. // J. Appl. Phys. 1994. V. 76. № 4. P. 2435.
  26. Kainbayev N., Sriubas M., Virbukas D., Rutkuniene Z., Bockute K., Bolegenova S., Laukaitis G. // Coating. 2020. V. 10. № 5. P. 432.
  27. Sal’nikov V.V., Pikalova E.Y. // Phys. Solid State. 2015. V. 57. № 10. P. 1944.
  28. Loridant S. // Catal. Today. 2021. V. 373. P. 98.
  29. Sartoretti E., Novara C., Giorgis F., Piumetti M., Bensaid S., Russo N., Fino D. // Sci. Rep. 2019. V. 9. № 1. P. 3875.
  30. Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432.
  31. Fazio B., Spadaro L., Trunfio G., Negro J., Arena F. // J. Raman Spectrosc. 2011. V. 42. № 7. P. 1583.
  32. Bernardini S., Bellatreccia F., Della Ventura G., Sodo A. // Geostand. Geoanal. Res. 2021. V. 45. № 1. P. 223.
  33. Taniguchi T., Watanabe T., Sugiyama N., Subramani A.K., Wagata H., Matsushita N., Yoshimura M. // J. Phys. Chem. C. 2009. V. 113. № 46. P. 19789.
  34. Giordano F., Trovarelli A., De Leitenburg C., Giona M. // J. Catal. 2000. V. 193. № 2. P. 273.
  35. Yao H.C., Yao Y.F.Y. // J. Catal. 1984. V. 86. № 2. P. 254.
  36. Guntida A., Suriye K., Panpranot J., Praserthdam P. // Top. Catal. 2018. V. 61. № 15–17. P. 1641.
  37. Wu X., Liu S., Weng D., Lin F., Ran R. // J. Hazard. Mater. 2011. V. 187. № 1–3. P. 283.
  38. Stobbe E.R., De Boer B.A., Geus J.W. // Catal. Today. 1999. V. 47. № 1–4. P. 161.
  39. Wang Z., Shen G., Li J., Liu H., Wang Q., Chen Y. // Appl. Catal. B: Environ. 2013. V. 138–139. P. 253.
  40. Kaplin I.Y., Lokteva E.S., Bataeva S. V., Maslakov K.I., Fionov A.V., Shumyantsev A.V., Isaikina O.Y., Kamaev A.O., Golubina E.V. // Pure Appl. Chem. 2021. V. 93. № 4. P. 447.
  41. Khaskheli A.A., Xu L., Liu D. // Energy Fuels. 2022. V. 36. № 14. P. 7362.
  42. Ye Z., Liu Y., Nikiforov A., Ji J., Zhao B., Wang J. // Chemosphere. 2023. V. 336. P. 139130.
  43. Miranda Cruz A.R., Assaf E.M., Gomes J.F., Assaf J.M. // Catal. Today. 2021. V. 381. P. 42.
  44. Martínez-Munuera J.C., Giménez-Mañogil J., Yeste M.P., Hungría A.B., Cauqui M.A., García-García A., Calvino J.J. // Appl. Surf. Sci. 2022. V. 575. P. 151717.

补充文件

附件文件
动作
1. JATS XML