Interference Transport in a Two-Dimensional Topological Insulator in a CdHgTe Quantum Well

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Interference transport in mesoscopic samples of a two-dimensional topological insulator in CdHgTe quantum wells is studied for the first time. It is established that quasi-ballistic edge transport in such an insulator exists at lengths up to 10 µm. In this transport regime, almost periodic Aharonov–Bohm oscillations caused by the formation of closed loops with a characteristic size of about 200 nm by edge states are found. The phase coherence length in the two-dimensional topological insulator is determined for the first time from the measured temperature dependence of their amplitude.

Sobre autores

M. Ryzhkov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: dimko@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

D. Kozlov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Experimental and Applied Physics, University of Regensburg

Email: dimko@isp.nsc.ru
630090, Novosibirsk, Russia; D-93040, Regensburg, Germany

D. Khudayberdiev

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Email: dimko@isp.nsc.ru
630090, Novosibirsk, Russia

Z. Kvon

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: dimko@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

N. Mikhaylov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: dimko@isp.nsc.ru
630090, Novosibirsk, Russia

Bibliografia

  1. М. С. Рыжков, Д. А. Козлов, Д. А. Худайбердиев, З. Д. Квон, Н. Н. Михайлов, С. А. Дворецкий, Письма в ЖЭТФ 115, 230 (2022).
  2. G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, and N. N. Mikhailov, Solid State Commun. 302, 113701 (2019).
  3. З. Д. Квон, Д. А. Козлов, Е. Б. Ольшанецкий, Г. М. Гусев, Н. Н. Михайлов, С. А. Дворецкий, УФН 190, 643 (2020).
  4. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, and S. A. Dvoretsky, Solid State Commun. 205, 4 (2015).
  5. P. Delplace and M. Bu¨ttiker, Phys. Rev. Lett. 109, 246803 (2012).
  6. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskу, J. Phys. C: Solid State Phys. 15, 7367 (1982).
  7. S. U. Piatrusha, E. S. Tikhonov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and V. S. Khrapai, Phys. Rev. Lett. 123, 056801 (2019).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023