On the Possibility of Converting Linearly Polarized Attosecond Pulses of High Harmonics into Circularly Polarized Pulses with an Increase in the Energy in an Optically Modulated Neon-Like Active Medium of an X-Ray Plasma Laser

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method is proposed for converting linearly polarized radiation of a single harmonic or a combination of high-order harmonics of an optical field, which form a train of subfemto-/attosecond pulses, into elliptically and, in particular, circularly polarized radiation in an optically modulated neon-like active medium of an X‑ray plasma laser. It is shown that this method can provide a high energy efficiency of radiation conversion due to the amplification of the harmonic field, and is also insensitive to changes in the number of high harmonics that form the amplified pulses. The possibility of experimental implementation of the method is considered on the example of an active plasma of neon-like Ti12+ ions with an unperturbed inverted transition wavelength of 32.6 nm.

Sobre autores

I. Khayrulin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: khairulinir@ipfran.ru

V. Antonov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

Email: khairulinir@ipfran.ru

M. Ryabikin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia

Autor responsável pela correspondência
Email: khairulinir@ipfran.ru

Bibliografia

  1. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
  2. M. Wu, S. Chen, S. Camp, K. J. Schafer, and M. B. Gaarde, J. Phys. B 49, 062003 (2016).
  3. L. Young, K. Ueda, M. Guhr et al. (Collaboration), J. Phys. B 51, 032003 (2018).
  4. R. Schoenlein, T. Elsaesser, K. Holldack, Z. Huang, H. Kapteyn, M. Murnane, and M. Woerner, Philos. Trans. R. Soc. A 377, 20180384 (2019).
  5. C. Winterfeldt, C. Spielmann, and G. Gerber, Rev. Mod. Phys. 80, 117 (2008).
  6. M. C. Kohler, T. Pfeifer, K. Z. Hatsagortsyan, and C. H. Keitel, Adv. At. Mol. Opt. Phys. 61, 159 (2012).
  7. В. В. Стрелков, В. Т. Платоненко, А. Ф. Стержантов, М. Ю. Рябикин, УФН 186, 449 (2016).
  8. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
  9. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L'Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
  10. K. S. Budil, P. Salieres, A. L'Huillier, T. Ditmire, and M. D. Perry, Phys. Rev. A 48, R3437 (1993).
  11. P. Antoine, A. L'Huillier, M. Lewenstein, P. Sali'eres, and B. Carre, Phys. Rev. A 53, 1725 (1996).
  12. C. T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262 (1990).
  13. C. M. Schneider, M. S. Hammond, P. Schuster, A. Cebollada, R. Miranda, and J. Kirschner, Phys. Rev. B 44, 12066 (1991).
  14. N. B¨owering, T. Lischke, B. Schmidtke, N. Mu¨ller, T. Khalil, and U. Heinzmann, Phys. Rev. Lett. 86, 1187 (2001).
  15. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST Accel. Beams 16, 110702 (2013).
  16. E. Ferrari, E. Allaria, J. Buck, G. De Ninno, B. Diviacco, D. Gauthier, L. Giannessi, L. Glaser, Z. Huang, M. Ilchen, G. Lambert, A. A. Lutman, B. Mahieu, G. Penco1, C. Spezzani, and J. Viefhaus, Sci. Rep. 5, 13531 (2015).
  17. A. A. Lutman, J. P. MacArthur, M. Ilchen et al. (Collaboration), Nature Photon. 10, 468 (2016).
  18. S. Ackermann, A. Azima, S. Bajt et al. (Collaboration), Phys. Rev. Lett. 111, 114801 (2013).
  19. V. V. Strelkov, M. A. Khokhlova, A. A. Gonoskov, I. A. Gonoskov, and M. Yu. Ryabikin, Phys. Rev. A 86, 013404 (2012).
  20. X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, Phys. Rev. Lett. 102, 073902 (2009).
  21. E. Skantzakis, S. Chatziathanasiou, P. A. Carpeggiani, G. Sansone, A. Nayak, D. Gray, P. Tzallas, D. Charalambidis, E. Hertz, and O. Faucher, Sci. Rep. 6, 39295 (2016).
  22. G. Lambert, B. Vodungbo, J. Gautier, B. Mahieu, V. Malka, S. Sebban, P. Zeitoun, J. Luning, J. Perron, A. Andreev, S. Stremoukhov, F. Ardana-Lamas, A. Dax, C. P. Hauri, A. Sardinha, and M. Fajardo, Nat.Commun. 6, 6167 (2015).
  23. C. Zhai, R. Shao, P. Lan, B. Wang, Y. Zhang, H. Yuan, S. M. Njoroge, L. He, and P. Lu, Phys. Rev. A 101, 053407 (2020).
  24. A. Fleischer, O. K r, T. Diskin, P. Sidorenko, and O. Cohen, Nature Photon. 8, 543 (2014).
  25. O. K r, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane, and O. Cohen, Nature Photon. 9, 99 (2015).
  26. A. Depresseux, E. Oliva, J. Gautier, F. Tissandier, G. Lambert, B. Vodungbo, J.-P. Goddet, A. Tafzi, J. Nejdl, M. Kozlova, G. Maynard, H. T. Kim, K. Ta Phuoc, A. Rousse, P. Zeitoun, and S. Sebban, Phys. Rev. Lett. 115, 083901 (2015).
  27. I. R. Khairulin, V. А. Antonov, М. Yu. Ryabikin, M. A. Berrill, V. N. Shlyaptsev, J. J. Rocca, and O. Kocharovskaya, Sci. Rep. 12, 6204 (2022).
  28. J. B. Kortright and J. H. Underwood, Nucl. Instrum. Methods A 291, 272 (1990).
  29. F. Sch¨afers, H.-Ch. Mertins, A. Gaupp, W. Gudat, M. Mertin, I. Packe, F. Schmolla, S. Di Fonzo, G. Soulli'e, W. Jark, R. Walker, X. Le Cann, R. Nyholm, and M. Eriksson, Appl. Opt. 38, 4074 (1999).
  30. H. Kimura, T. Miyahara, Y. Goto, K. Mayama, M. Yanagihara, and M. Yamamoto, Rev. Sci. Instrum. 66, 1920 (1995).
  31. B. Vodungbo, A. B. Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lu¨ning, and P. Zeitoun, Opt. Express 19, 4346 (2011).
  32. J. Schmidt, A. Guggenmos, M. Hofstetter, S. H. Chew, and U. Kleineberg, Opt. Express 23, 33564 (2015).
  33. P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnu¨rer, I. Will, and W. Sandner, Phys. Rev. Lett. 78, 2748 (1997).
  34. D. Alessi, B. M. Luther, Y. Wang, M. A. Larotonda, M. Berrill, and J. J. Rocca, Opt. Express 13, 2093 (2005).
  35. M. Chini, B. Zhao, H. Wang, Y. Cheng, S. X. Hu, and Z. Chang, Phys. Rev. Lett. 109, 073601 (2012).
  36. В. С. Попов, УФН 174, 921 (2004).
  37. I. R. Khairulin, V. A. Antonov, M. Yu. Ryabikin, and O. Kocharovskaya, Photonics 9, 51 (2022).
  38. T. R. Akhmedzhanov, V. A. Antonov, A. Morozov, A. Goltsov, M. Scully, S. Suckewer, and O. Kocharovskaya, Phys. Rev. A 96, 033825 (2017).
  39. I. R. Khairulin, V. A. Antonov, M. Yu. Ryabikin, and O. Kocharovskaya, Phys. Rev. Res. 2, 023255 (2020).
  40. V. A. Antonov, I. R. Khairulin, and O. Kocharovskaya, Phys. Rev. A 102, 063528 (2020).
  41. И. Р. Хайрулин, В. А. Антонов, О. А. Кочаровская, Квантовая электроника 50, 375 (2020).
  42. I. R. Khairulin, V. A. Antonov, M. Yu. Ryabikin, and O. Kocharovskaya, Phys. Rev. A 107, 023507 (2023).
  43. M. Born and E. Wolf, Principles of Optics, Pergamon Press, N.Y. (1964).
  44. G. Andriukaitis, T. Balciunas, S. Aliˇsauskas, A. Pugˇzlys, A. Baltuˇska, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).
  45. Z. Samsonova, S. Hofer, V. Kaymak, S. Aliˇsauskas, V. Shumakova, A. Pugˇzlys, A. Baltuska, T. Siefke, S. Kroker, A. Pukhov, O. Rosmej, I. Uschmann, C. Spielmann, and D. Kartashov, Phys. Rev. X 9, 021029 (2019).
  46. M. Berrill, Y. Wang, M. A. Larotonda, B. M. Luther, V. N. Shlyaptsev, and J. J. Rocca, Phys. Rev. A 75, 063821 (2007).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023