ВЛИЯНИЕ СЛОЯ Al2O3 НА СТРУКТУРНЫЕ И ТЕМПЕРАТУРНО-ЗАВИСИМЫЕ МАГНИТНЫЕ СВОЙСТВА ТОНКИХ ПЛЕНОК КОБАЛЬТА

Обложка

Цитировать

Полный текст

Аннотация

Изучены пленки кобальта, осажденные магнетронным методом на аморфный слой Al2O3. Исследованы морфологические и магнитные особенности, связанные с образованием естественно окисленной антиферромагнитной пленки на кобальте и с интерфейсом Al2O3/Co. Обнаружено изменение знака обменного смещения при температуре ниже 200 K, при увеличении толщины слоя кобальта более 10 нм на пленке Al2O3.

Об авторах

А. В Кобяков

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский федеральный университет»; Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Email: nanonauka@mail.ru
Красноярск, Россия

Г. С Патрин

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский федеральный университет»; Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Красноярск, Россия

В. И Юшков

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский федеральный университет»; Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Красноярск, Россия

Список литературы

  1. Blauert J., Kiourti A. // IEEE TAP. 2019. V. 68. No. 3. P. 2040.
  2. Yetisen A.K., Martinez-Hurtado J.L., Unal B. et al. // Adv. Mater. 2018. V. 30. Art. No. 1706910.
  3. Школина M.J., Kwun F.A., Coupokos H.H. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 109; Shkanaikina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
  4. Дроворуб Е.В., Прудинов В.В., Прудинов П.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 2. С. 158; Drovovny E.V., Prudnikov V.V., Prudnikov P.V. // Bull. UNKs. Acad. Sci. Phys. 2022. V. 86. No. 2. P. 109.
  5. Bean L.J.D., Livingston C.P. // J. Appl. Phys. 1959. V. 30. No. 4. P. 1205.
  6. Tung R.T. // Appl. Phys. Rev. 2014. V. 1. No. 1. Art. No. 011304.
  7. Юрослав А.Н., Яшин М.М., Гальшина Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 116; Yurasov A.N., Yashin M.M., Ganshina E.A. et al. // Bull. UNKs. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 601.
  8. Radu F., Erkkorn M., Siebrecht R. et al. // Phys. Rev. B. 2003. V. 67. Art. No. 134409.
  9. Kobusko A.B., Tymianos H.A., Патриш Г.С. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 947; Kobyakov A.V., Turpanov I.A., Patrin G.S. et al. // Bull. UNKs. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 864.
  10. Rosa R.G.G., Souza R.L., Gomes G.F.M. et al. // AIP Advances. 2021. V. 11. Art. No. 045009.
  11. Bera A.K., Gupta P., Garai D. et al. // Appl. Surf. Sci. Adv. 2021. V. 6. No. 1. Art. No. 100124.
  12. Demirer F.E., Lavrijsen R., Koopmans B. // J. Appl. Phys. 2021. V. 129. Art. No. 163904.
  13. Biesinger M.C., Payne B.P., Grosvenor A.P. et al. // Appl. Surface Sci. 2011. V. 257. P. 2717.
  14. Myers T.J., Throckmorton J.A., Borrelli R.A. // Appl. Surface Sci. 2021. V. 569. No. 15. Art. No. 150878.
  15. Renner R.F., Liddell K., Nona C. // J. Mater. Res. 2000. V. 15. No. 2. P. 458.
  16. Kozlowski W., Balcerski J., Kowalczyk P.J. et al. // Appl. Phys. A. 2017. V. 123. P. 169.
  17. Nogues J., Schuller I.K. // J. Magn. Magn. Mater. 1999. V. 192 P. 203.
  18. Gnoli L., Benini M., Del Conte C. et al. // ACS Appl. Electron. Mater. 2024. V. 6. No. 5. P. 3138.
  19. Thomas S., Reethn K., Tharveer T. // J. Appl. Phys. 2017. V. 122. Art. No. 063902.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025