Influence of temperature on magnetoelectric effect in a structure containing langatate

Capa

Citar

Texto integral

Resumo

The effect of temperature on the linear magnetoelectric response in a three-layered composite structure comprising a single crystal of langatate with thin films of an amorphous ferromagnetic alloy deposited on either side was investigated. Measurements were conducted in the temperature range of 220–340 K. As a result, a linear reduction in the magnetoelectric coupling coefficient and sensitivity to a magnetic field with an increase in temperature was observed.

Sobre autores

E. Bolotina

MIREA – Russian Technological University

Email: ekaterina.bolotina1@mail.ru
Moscow, Russia

D. Savelev

MIREA – Russian Technological University

Moscow, Russia

A. Turutin

National University of Science and Technology MISIS

Laboratory of Physics of Oxide Ferroelectrics Moscow, Russia

I. Kubasov

National University of Science and Technology MISIS

Laboratory of Physics of Oxide Ferroelectrics Moscow, Russia

A. Temirov

National University of Science and Technology MISIS

Laboratory of Physics of Oxide Ferroelectrics Moscow, Russia

L. Fetisov

MIREA – Russian Technological University

Moscow, Russia

Bibliografia

  1. Nan C.W., Bichurin M.I., Dong S. et al. // J. Appl. Phys. 2008. V. 103. Art. No. 031101.
  2. Turutin A.V., Kubasov I.V., Kislyuk A.M. et al. // Nanobiotech. Reports. 2022. V. 17. P. 261.
  3. Kuts V.V., Turutin A.V., Kislyuk A.M. et al. // Mod. Elect. Mater. 2023. V. 9. No. 3. P. 105.
  4. Zelenov F.V., Tarasenko T.N., Kovalev O.E. et al. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 322.
  5. Luo B., Will-Cole A.R., Dong C. et al. // Nature Rev. Electr. UNK. 2024. V. 1. P. 317.
  6. Zhang J., Gao Y. // Int. J. Sol. Struct. 2015. V. 69. P. 291.
  7. Subhani S.M., Maniprakash S., Arockiarajan A. // Mechanics. Mater. 2018. V. 126. P. 111.
  8. Burdin D.A., Fetisov Y.K., Chashin D.V., Ekonomov N.A. // Tech. Phys. Lett. 2012. V. 38. No 7. P. 661.
  9. Burdin D.A., Fetisov Y.K., Chashin D.V., Ekonomov N.A. // Bull. UNKs. Acad. Sci. Phys. 2014. V. 78. No. 2. P. 131.
  10. Бурдин Д.А., Фетисов Ю.К., Фетисов Ю.К. и др. // ЖТФ. 2014. Т. 84. № 9. С. 90.
  11. Burdin D.A., Ekonomov N.A., Chashin D.V. et al. // Materials. 2017. V. 10. Art. No. 1183.
  12. Davulis P., Pereira da Cunha M. // Proc. IEEE Int. Freq. Control Symp. (California, 2010). P. 252.
  13. https://newpiego.com/knowledge_base/crystals/langatat.
  14. Turutin A.V., Skrylev E.A., Kubasov I.V. et al. // Materials. 2023. V. 16. No. 2. Art. No. 484.
  15. Fetisov L.Y., Dzhaparidze M.V., Saveliev D.V. et al. // Sensors. 2023. V. 23. No. 9. Art. No. 4523.
  16. Fedulov F.A., Fetisov L.Y., Chashin D.V. et al. // Sens. Actuat. A. Phys. 2022. V. 346. Art. No. 113844.
  17. Filippov D.A., Laletin V.M., Galichyan T.A. // Phys. Solid State. 2013. V. 55. No. 9. P. 1840.
  18. Davulis P.M. Characterization of the Elastic, Piezoelectric, and Dielectric Properties of Langatate At High Temperatures Up To 900°C. Doctor. Dissert. The University of Maine, 2013.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025