Changes in the electroretinogram of compound eyes of the cockroach Periplaneta americana L. upon ocelli shielding
- 作者: Novikova Е.S.1, Skiba B.O.1,2, Puyto A.А.1, Astakhova L.А.1, Rotov A.Y.1, Zhukovskaya M.I.1
-
隶属关系:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Saint Petersburg State University
- 期: 卷 39, 编号 2 (2025)
- 页面: 75-87
- 栏目: ЗРИТЕЛЬНАЯ СИСТЕМА
- URL: https://rjraap.com/0235-0092/article/view/687721
- DOI: https://doi.org/10.31857/S0235009225020032
- ID: 687721
如何引用文章
详细
The cockroach visual system comprises compound eyes with photoreceptors of two spectral classes and ocelli – simple eyes consisting of green-sensitive photoreceptors. Using the method of non-invasive electroretinogram (ERG) recording from both compound eyes, it was shown that shielding of both ocelli leads to a significant alteration of ERG parameters, namely, an increase in the amplitude of responses to short-wavelength stimuli of saturating intensity and a slowing down of responses to both short-wavelength and long-wavelength light. Ocelli estimating the total light level modulate the functioning of photoreceptors of compound eyes at night, under low-light conditions, by increasing the summation time of light entering the eye to generate a response.
全文:

作者简介
Е. Novikova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg
B. Skiba
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Saint Petersburg State University
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg; St. Petersburg
A. Puyto
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg
L. Astakhova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg
A. Rotov
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg
M. Zhukovskaya
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: mzhukovskaya@rambler.ru
俄罗斯联邦, St. Petersburg
参考
- Gribakin F.G. Mehanizmy fotorecepcii nasekomyh [Mechanisms of photoreception in insects]. Leningrad. Nauka, 1981. 213 p. (in Russian).
- Novikova E.S., Astakhova L.A., Rotov A.Y. Non-Invasive Recording of the Electroretinogram from Both Compound Eyes in the Cockroach Periplaneta americana L. in Response to Light Stimuli. Neurosci Behav Physiol. 2024. V. 54. P. 1017–1025. doi: 10.1007/s11055-024-01705-8.
- Rotov A.Y., Astakhova, L.A. Firsov M.L., Govardovskii V.I. Light adaptation of retinal rods, adaptation memory, and afterimages. Neurosci Behav Physiol, 2021. V. 51. P. 116-122. doi: 10.1007/s11055-020-01046-2/
- Severina I.Y., Novikova E.S., Zhukovskaya M.I. Insect Ocelli: Ecology, Physiology, and Morphology of the Accessory Visual System. Neurosci Behav Physiol. 2024. V. 54. P. 1432–1441. doi: 10.1007/s11055-024-01742-3.
- Arnold T., Korek S., Massah A., Eschstruth D., Stengl M. Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. J Comp Neurol. 2020. V. 528(10). P. 1754–1774. doi: 10.1002/cne.24844.
- Butler R. The anatomy of the compound eye of Periplaneta americana L. 2. Fine structure. J Comp Physiol. 1973. V. 83. P. 239-262. doi: 10.1007/BF00693677.
- Cheng K.Y., Frye M.A. Neuromodulation of insect motion vision. J Comp Physiol, A. 2020. V. 206(2). P. 125–137. doi: 10.1007/s00359-019-01383-9.
- Clark D.A., Bursztyn L., Horowitz M.A., Schnitzer M.J., Clandinin T.R. Defining the computational structure of the motion detector in Drosophila. Neuron. 2011. V. 70. P. 1165–1177. doi: 10.1016/j.neuron.2011.05.023.
- Cronin T.W., Järvilehto M., Weckström M., Lall A.B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol, A. 2000. V. 186. P. 1–12. doi: 10.1007/s003590050001.
- Dau A., Friederich U., Dongre S., Li X., Bollepalli M.K., Hardie R.C., Juusola M. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine. Front Neural Circuits. 2016. V. 10. P. 19. doi: 10.3389/fncir.2016.00019.
- Dolph P., Nair A., Raghu P. Electroretinogram recordings of Drosophila. Cold Spring Harb Protoc. 2011. V. 2011(1). P. pdb-prot5549. DOI: 10.1101/ pdb.prot5549.
- Dubs A. The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J Comp Physiol. 1982. V. 146. P. 321–343. doi: 10.1007/BF00612703.
- French A.S., Meisner S., Liu H., Weckström M., Torkkeli P.H. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Front Physiol. 2015. V. 6. P. 207. doi: 10.3389/fphys.2015.00207.
- Fuller H., Eckert M., Blechschmidt K. Distribution of GABA-like immunoreactive neurons in the optic lobes of Periplaneta americana. Cell Tissue Res. 1989. V. 255. P. 225–233. doi: 10.1007/BF00229085.
- Frolov R.V., Severina I., Novikova E., Ignatova I.I., Liu H., Zhukovskaya M., Torkkeli P.H., French A.S. Opsin knockdown specifically slows phototransduction in broadband and UV-sensitive photoreceptors in Periplaneta americana. J Comp Physiol, A. 2022. V. 208(5-6). P. 591–604. doi: 10.1007/s00359-022-01580-z.
- Goriachenkov A.A., Rotov A.Y., Firsov M.L. Developmental dynamics of the functional state of the retina in mice with inherited photoreceptor degeneration. Neurosci Behav Physi. 2021. V. 51. P. 807–815. doi: 10.1007/s11055-021-01137-8.
- Goldsmith T.H., Ruck P.R. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees: an electrophysiological study. J Gen Physiol. 1958. V. 41(6). P. 1171. doi: 10.1085/jgp.41.6.1171.
- Habenstein J., Amini E., Grübel K., El Jundi, B., Rössler W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J Comp Neurol. 2020. V. 528(18). P. 3479–3506. doi: 10.1002/cne.24934.
- Hagberg M., Nässel D.R. Interneurones subserving ocelli in two species of trichopterous insects: morphology and central projections. Cell Tissue Res. 1986. V. 245. P. 197–205.
- Hevers W., Hardie R.C. Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in Drosophila photoreceptors. Neuron. 1995. V. 14(4). P. 845–856. doi: 10.1016/0896-6273(95)90228-7.
- Honegger H.W., Schürmann F.W. Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus campestris. Cell Tissue Res. 1975. V. 159(2). P. 213–225. doi: 10.1007/BF00219157.
- Honkanen A., Immonen E.V., Salmela I., Heimonen K., Weckström M. Insect photoreceptor adaptations to night vision. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017. V. 372(1717). P. 20160077. doi: 10.1098/rstb.2016.0077.
- Honkanen A., Saari P., Takalo J., Heimonen K., Weckström M. The role of ocelli in cockroach optomotor performance. J Comp Physiol, A. 2018. V. 204. P. 231–243. doi: 10.1007/s00359-017-1235-z.
- Hu W., Wang T., Wang X., Han J. Ih channels control feedback regulation from amacrine cells to photoreceptors. PLoS Biol. 2015. V. 13(4). P. e1002115. doi: 10.1371/journal.pbio.1002115.
- Insausti T.C., Lazzari C.R. Central projections of first‐order ocellar interneurons in the bug Triatoma infestans (Heteroptera: Reduviidae). J Morphol. 1996. V. 229(2). P. 161–169. doi: 10.1002/(SICI)1097-4687(199608)229:2<161::AID-JMOR2>3.0.CO;2-4.
- Land M.F., Nilsson D.E. Animal eyes. New York, Oxford University Press Inc. 2012. 288 p.
- Loesel R., Homberg U. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol. 2001. V. 439. P. 193–207. doi: 10.1002/cne.1342.
- Mizunami M., Tateda H. Classification of ocellar interneurones in the cockroach brain. J Exp Biol. 1986. V. 125(1). P. 57–70. doi: 10.1242/jeb.125.1.57.
- Mizunami M. Processing of contrast signals in the insect ocellar system. Zool Sci. 1994. V. 11(2). P. 175-190. doi: 10.34425/zs001196.
- Mizunami M. Morphology of higher‐order ocellar interneurons in the cockroach brain. J Comp Neurol. 1995. V. 362(2). P. 293–304. doi: 10.1002/cne.903620211.
- Ogawa Y., Ryan L.A., Palavalli-Nettimi R., Seeger O., Hart N.S., Narendra A. Spatial resolving power and contrast sensitivity are adapted for ambient light conditions in Australian Myrmecia ants. Frontiers in Ecology and Evolution. 2019. V. 7. P. 18. doi: 10.3389/fevo.2019.00018.
- Parsons M.M., Krapp H.G., Laughlin S.B. A motion-sensitive neuron responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. J Exp Biol. 2006. V. 209(22). P. 4464–4474. doi: 10.1242/jeb.02560.
- Popkiewicz B., Prete F.R. Macroscopic characteristics of the praying mantis electroretinogram. J Insect Physiol. 2013. V. 59(8), P. 812–823. doi: 10.1016/j.jinsphys.2013.05.002.
- Rence B.G., Lisy M.T., Garves B.R., Quinlan B.J. The role of ocelli in circadian singing rhythms of crickets. Physiol Entomol. 1988. V. 13(2). P. 201–212. doi: 10.1111/j.1365-3032.1988.tb00924.x.
- Ryan L.A., Cunningham R., Hart N.S., Ogawa Y. The buzz around spatial resolving power and contrast sensitivity in the honeybee, Apis mellifera. Vision Res. 2020. V. 169. P. 25–32. doi: 10.1016/j.visres.2020.02.005.
- Schirmer A.E., Prete F.R., Mantes E.S., Urdiales A.F., Bogue W. Circadian rhythms affect electroretinogram, compound eye color, striking behavior and locomotion of the praying mantis Hierodula patellifera. J Exp Biol. 2014. V. 217(21). P. 3853–3861. doi: 10.1242/jeb.102947.
- Sinakevitch I., Douglass J.K., Scholtz G., Loesel R., Strausfeld N.J. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol. 2003. V. 467(2). P. 150–172. doi: 10.1002/cne.10925.
- Sinakevitch I., Niwa M., Strausfeld N.J. Octopamine‐like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J Comp Neurol. 2005. V. 488(3). P. 233-254. doi: 10.1002/cne.20572.
- Sinakevitch I., Strausfeld N.J. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol. 2006. V. 494. P. 460–475. doi: 10.1002/cne.20799.
- Song B.M., Lee C.H. Toward a mechanistic understanding of color vision in insects. Front Neural Circuits. 2018. V. 12. P. 16. doi: 10.3389/fncir.2018.00016.
- Strausfeld N.J. Atlas of an insect brain. Berlin, Springer-Verlag. 1976. 214 p.
- Taylor G.K., Krapp H.G. Sensory systems and flight stability: what do insects measure and why? Advances in insect physiology. 2007. V. 34. P. 231–316. doi: 10.1016/S0065-2806(07)34005-8.
- Van Der Kooi C.J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu Rev Entomol. 2021. V. 66(1). P. 435–461. doi: 10.1146/annurev-ento-061720-071644.
- Weber G., Renner M. The ocellus of the cockroach Periplaneta americana (Blattariae). Receptory area. Cell Tissue Res. 1976. V. 168. P. 209–222. doi: 10.1007/BF00215878.
- Wu J., Tian Y., Dong W., Han J. Protocol for electroretinogram recording of the Drosophila compound eye. STAR protocols. 2022. V. 3(2). P. 101286. doi: 10.1016/j.xpro.2022.101286.
补充文件
