Parameters of decomposition and combustion of reed vegetation: 1. Mechanism and kinetics of thermo-oxidative decomposition and pyrolysis
- Autores: Aseeva R.M.1, Kruglov E.Y.1, Kobelev A.A.1, Naganovsky Y.K.2, Serkov B.B.1
-
Afiliações:
- State Fire Academy of Emercom of Russia
- All-Russian Research Institute for Fire Protection
- Edição: Volume 43, Nº 5 (2024)
- Páginas: 47-58
- Seção: Combustion, explosion and shock waves
- URL: https://rjraap.com/0207-401X/article/view/674947
- DOI: https://doi.org/10.31857/S0207401X24050068
- ID: 674947
Citar
Resumo
The parameters of decomposition and combustion of reed plants are formulated, which characterize combustible material and are necessary for physical and mathematical modeling of the occurrence and development of a fire, determining the risk of its consequences. According to the results of TGA, the content of the main components in the leaves and stem of the plant was estimated, the mechanism and parameters of the macrokinetics of their thermal-oxidative decomposition and pyrolysis were determined.
Palavras-chave
Sobre autores
R. Aseeva
State Fire Academy of Emercom of Russia
Email: 89268196698@mail.ru
Rússia, Moscow
E. Kruglov
State Fire Academy of Emercom of Russia
Autor responsável pela correspondência
Email: 89268196698@mail.ru
Rússia, Moscow
A. Kobelev
State Fire Academy of Emercom of Russia
Email: 89268196698@mail.ru
Rússia, Moscow
Y. Naganovsky
All-Russian Research Institute for Fire Protection
Email: 89268196698@mail.ru
Rússia, Balashikha city
B. Serkov
State Fire Academy of Emercom of Russia
Email: 89268196698@mail.ru
Rússia, Moscow
Bibliografia
- Glushkov I.V., Lupachik V.V., Zhuravleva I.V. et al. // Forest science issues. 2021. V. 4(2). № 84. https://doi.org/10.31509/2658-607x-2021424
- Berlin A.A. // Polymer Science Series. C. 2021. V. 63. P. 1. https://doi.org/10.1134/S181123822101001X
- Rybalkina M. // https://161.ru/text/incidents/ 2020/03/28/69057250/
- Kislov V.M., Tsvetkov M.V., Zaichenko A.Yu. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 819. https://doi.org/10.1134/S1990793121050055
- Kask U., Kask L., Link S. // Mire. Peat. 2013. V. 13. № 5.
- Alhumade H., da Silva J.C.G., Ahmad M.S. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 385.
- Peres Ch.B., Rosa A.H., De Morais L.C. // SN Appl. Sci. 2021. V. 3. № 337. https://doi.org/10.1007/s42452-021-04345-6
- Li J., Qiao Y., Zong P. et al. // Energy Fuels. 2019. V. 33. P. 3299.
- Smirnova A.N., Shvydkiy V.O., Shishkina L.N. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 710. https://doi.org/10.1134/S1990793121040102
- Wasserman L.A., Plashchina I.G., Filatova A.G., Khatefov E.B., Goldshtein V.G. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 161. https://doi.org/10.1134/S1990793121010292
- Shafizadeh F., McGinnis G.D. // Carbohydr. Res. 1971. V. 16. P. 273.
- Bonanno G., Giudice R.Lo. // Ecol. Indic. 2010. V. 10. № 3. P. 639. https://doi.org/10.1016/j.ecolind.2009.11.002
- Kissinger H.E. // Anal. Chem. 1957. V. 29. № 11. P. 1702. https://doi.org/10.1021/ac60131a045
- Mamleev V., Bourbigot S., Le Bras M. et al. // J. Therm. Anal. Calorim. 2004. V. 78. № 3. P.1009. https://doi.org/10.1007/s10973-004-0467-7
- Mamleev V., Bourbigot S., Yvon J. // J. Anal. Appl. Pyrolysis. 2007. V. 80. P. 151. https://doi.org/10.1016/j.jaap.2007.01.013
- Сriado J.M. // Thermochim. Acta. 1978. V. 24. № 1. P. 186. https://doi.org/10.1016/0040-6031(78)85151-x
- Rogers F.E., Ohlemiller T.J. // J. Macromol. Sci.-Chem. 1981. V. 15. № 1. P. 169. https://doi.org/10.1080/00222338108066438
- Gorbachev V.M. // J. Therm. Anal. 1975. V. 8. P. 349. https://doi.org/10.1007/BF01904012
- Aseeva R.M., Sakharov P.A., Sakharov A.M. // Russ. J. Chem. Phys. B. 2009. V. 3. № 5. P. 844.
- Aleshina L.A., Glazkova S.V., Lugovskaya L.A. et al. // Chemistry Plant Raw Materials. 2001. V. 1. P. 5.
- Perova A.N., Brevnov P.N., Usachev S.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 716. https://doi.org/10.1134/S1990793121040072
- Kim U.J., Eom S.H., Wada M. et al. // Polym. Degrad. Stabil. 2010. V. 95. № 5. P. 778. https://doi.org/10.1016/j.polymdegradstab.2010.02.009
- Wang Z., McDonald A., Westerhof R. et al. // J. Anal. Appl. Pyrolysis. 2013. V. 100. P. 56. https://doi.org/10.1016/j.jaap.2012.11.017
- Paajanen A., Rinta-Paavola A., Vaari J. // Cellulose. 2021. V. 28. № 14. P. 8987. https://doi.org/10.1016/j.tca.2012.11.003
- Pérez-Maqueda L.A., Perejón A., Criado J.M. // Thermochim. Acta. 2013. V. 552. P. 54. https://doi.org/10.1016/j.tca.2012.11.003
Arquivos suplementares
