Cationic Complexes of Magnesium with Phenanthroline. Synthesis, Structural Features and Antibacterial Activity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interaction of magnesium oxide/magnesium pivalate with aromatic heterocyclic acids (3-indolecarboxylic (Hind); 2-thiophenecarboxylic (Htph)) and 1,10-phenanthroline (phen) led to the formation of cationic complexes [Mg(phen)(ind)(H2O)3]+ind·2phen·1.5H2O (I) and [Mg(phen)(H2O)4]32+·6thp·2phen (II), the structure of which was established by direct X-ray diffraction analysis (CCDC Nos. 2422043 (I) and 2422042 (II)). According to X-ray data, the complexing agent in compounds I and II is in a distorted octahedral environment {MgN2O4} with the coordination number of the magnesium atom equal to 6. In the crystal packing of I, stacking interactions are observed between the aromatic phen cycles, forming parallel stacks held together by hydrogen bonds. Outer-sphere tph in II form strong hydrogen bonds with the coordinated water molecules, forming an 1D hydrogen-bonded framework. Antibacterial activity against a non-pathogenic strain of M. smegmatis and two strains — Lactobacterium brevis and Lactobacillus fermentum was determined for I and II. Antiproliferative activity of I was determined against cancer lines of human ovarian adenocarcinoma (SKOV3), breast adenocarcinoma (MCF7) and glioblastoma (A172).

Texto integral

Acesso é fechado

Sobre autores

S. Potylitsyna

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: irinalu05@rambler.ru
Rússia, Moscow; Moscow

K. Koshenskova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow

M. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow

L. Razvorotneva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: irinalu05@rambler.ru
Rússia, Moscow; Moscow

F. Dolgushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow

O. Bekker

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow

A. Zaeva

Amur State Medical Academy of the Ministry of Healthcare of the Russian Federation

Email: irinalu05@rambler.ru
Rússia, Blagoveschensk

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: irinalu05@rambler.ru
Rússia, Moscow; Moscow

I. Lutsenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: irinalu05@rambler.ru
Rússia, Moscow

Bibliografia

  1. Dimé K.D.A., Cattey H., Lucas D. et al. // Eur. J. Inorg. Chem. 2018. V. 44. P. 4834.
  2. Bhattacharjee J., Harinath A., Sarkar A. et al. // ChemCatChem. 2019. V. 11. P. 3366.
  3. Nandi S., Luna Ph., Maity R. et al. // Mater. Horiz. 2019. V. 6. P. 1883.
  4. Gupta A., Badam R., Nag A. et al. // ACS Appl. Energy Mater. 2021. V. 4. № 3. P. 2231.
  5. Moskalev M.V., Skatova A.A., Razborov D.A. et al. // Eur. J. Inorg. Chem. 2021. P. 1890.
  6. Carmona F.J., Guaggliardi A., Masciocchi N. // Nanomaterials. 2022. V. 12. P. 2709.
  7. Pechen L., Makhonina E., Medvedeva A. et al. // Nanomaterials. 2022. V. 12. P. 4054.
  8. Anker M.D., Kefalidis C.E., Fang Y.Y.J. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 10036.
  9. Yuan N., Zhang M., Cai H. et al. // Inorg. Chem. Commun. 2019. V. 101. P. 130.
  10. Li N., Zhao Z., Yu C. et al. // Dalton. Trans. 2019. V. 48. P. 9067.
  11. Cole L.B., Holt E.M. // Inorg. Chim. Acta. 1989. V. 160. P. 195.
  12. International Union of Crystallography. Tables for X-Ray Crystallography. Dordrecht: Kluwer Academic Publishers, 1995. 681 p.
  13. Луценко И.А., Никифорова М.Е., Кошенскова К.А. и др. // Коорд. химия. 2022. Т. 48. С. 83 (Lutsenko I.A., Nikiforova M.E., Koshenskova K.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 12 P. 879). https://doi.org/10.31857/S0132344X22020049
  14. Nikiforova M.E., Yambulatov D.S., Nelyubina Y.V. et al. // Crystals. 2023. V. 13. P. 1306.
  15. Gupta M.P., van Alsenoy C., Lenstra A.T.H. // Bull. Soc. Chim. Belg. 1985. V. 94. P. 161.
  16. Tang S., Yang J.J. Encyclopedia of Metalloproteins. Magnesium Binding Sites in Proteins. Springer, 2013. P. 1243.
  17. Гюльбяков Н.Р., Белова Л.В., Гюльбякова Х.Н. // Кронос. 2022. Т. 7. C. 59 (Gulbjakov N.R., Belova L.V., Gulbjakova H.N. // Chronos. 2022. V. 7. P. 59). https://doi.org/ 10.52013/2658-7556-70-8-19
  18. Pasternak K., Kocot J., Horecka A. // J. Elem. 2010. V. 15. P. 601.
  19. Peng X., Yan Y., Chen R. et al. // Curr. Med. Res. Opin. 2020. V. 36. P. 271.
  20. Guerrera M.P., Volpe S.L., Mao J.J. // Am. Fam. Physician. 2009. V. 80. P. 157.
  21. Vanini J., Rodrigues G.B., Juchem A.L.M. et al. // Basic Clin. Pharmacol. Toxicol. 2024. V. 135. P. 767.
  22. Marchi R.C., Silva E.S., Santos J.J. et al. // ACS Omega. 2020. V. 5. P. 3504.
  23. Луценко И.A., Вологжанина А.В., Каюкова Л.А. и др. // Изв. АН. Cер. хим. 2022. Т. 71. С. 2172 (Lutsenko I.A., Vologzhanina A.V., Kayukova L.A. et al. // Russ. Chem. Bull. 2022. V. 71. P. 2172). https://doi.org/ 10.1007/s11172-022-3643-7
  24. Кошенскова К.А., Баравиков Д.Е., Нелюбина Ю.В. и др. // Коорд. химия. 2023. Т. 49. С. 660 (Koshenskova K.A., Baravikov D.E., Nelyubina Y.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 660). https://doi.org/ 10.1007/s11172-022-3643-7
  25. Кошенскова К.А., Баравиков Д.Е., Разворотнева Л. С. и др. // Изв. АН. Сер. хим. 2024. Т. 73. С. 1818 (Koshenskova K.A., Baravikov D.E., Razvorotneva L.S. et al. // Russ. Chem. Bull. 2024. V. 73. P. 1818). https://doi.org/10.1007/s11172-024-4299-2
  26. Uvarova M.A., Dolgushin F.M., Babeshkin K.A. et al. // Inorg. Chim. Acta. 2025. V. 575. P. 122445.
  27. Уварова М.А., Новикова М.В., Елисеенкова В.А. и др. // Коорд. химия. 2023. Т. 49. С. 660 (Uvarova M.A., Novikova M. V., Eliseenkova V. A. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 680). https://doi.org/10.1134/s1070328423600419
  28. Луценко И.А., Баравиков Д.Е., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 366 (Lutsenko I.A., Baravikov D.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 6. P. 411). https://doi.org/10.1134/S1070328420060056
  29. Koshenskova K.A., Baravikov D.E., Kayukova L.A. et al. // Polyhedron. 2024. V. 251. P. 116852.
  30. Lutsenko I.A., Yambulatov D.S., Kiskin M.A. et al. // ChemistrySelect. 2020. V. 5. P. 11837.
  31. Uvarova M.A., Lutsenko I.A., Kiskin M.A. et al. // Polyhedron. 2021. V. 203. P. 115241.
  32. Uvarova M.A., Lutsenko I. A., Shmelev M. A. et al. // New J. Chem. 2024. V. 48. P. 717.
  33. Uvarova M.A., Baravikov D.E., Dolgushin F.M. et al. // Inorg. Chim. Acta. 2023. V. 556. P. 121649.
  34. Луценко И.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2022. Т. 48. С. 808. (Lutsenko I.A., Loseva O.V., Ivanov A.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. P. 808). https://doi.org/10.1134/S1070328422700178
  35. Tроянов С.И., Киселева E.A., Рыков A.N. и др. // Журн. неорган. химии. 2002. Т. 47. С. 1667 (Troyanov S.I., Kiseleva E.A. Rykov A.N. et al. // Russ. J. Inorg. Chem. 2002. V. 47. P. 1667).
  36. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  37. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
  38. Ramon-García S.Ng.C., Anderson H. et al. // Antimikrob. Agents Chemother. 2011. V. 55. № 8. P. 3861.
  39. Bekker O.B., Sokolov D.N., Luzina O.A. et al. // Med. Chem. Res. 2015. V. 24. P. 2926.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (226KB)
3. Fig. 1. Independent part of the unit cell in structure I (thermal ellipsoids of atoms are shown with a probability of 50%).

Baixar (194KB)
4. Fig. 2. Stacking interactions in structure I.

Baixar (270KB)
5. Fig. 3. Fragment of crystal packing II (thermal ellipsoids of atoms are given with a probability of 50%).

Baixar (164KB)
6. Fig. 4. Stacking interactions in structure II.

Baixar (352KB)

Declaração de direitos autorais © Российская академия наук, 2025