UNDERCOMPRESSIVE DISCONTINUITIES OF A HYPERBOLIC SYSTEM OF CONSERVATION LAW EQUATIONS: FINITE-DIFFERENCE SCHEMES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A class of finite-difference schemes with well-controlled dissipation is used to solve equations describing long longitudinal–torsional waves in elastic rods. The governing system of equations is a hyperbolic system of conservation laws whose solutions may include undercompressive discontinuities (nonclassical discontinuities). It is well known that such solutions depend on the choice of a regularizing dissipative operator distinguishing a unique solution of the problem. In the scheme with well-controlled dissipation, the dissipative operator defined by its first differential approximation coincides up to small higher order terms with the operator used to define the solution in the continual formulation. The class of schemes under discussion has been poorly studied to date. Numerical experiments are presented that demonstrate the efficiency of this approach.

作者简介

R. Polekhina

Steklov Mathematical Institute, Russian Academy of Sciences; Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

A. Chugainova

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: anna_ch@mi-ras.ru
Moscow, Russia

参考

  1. Куликовский А.Г., Чугайнова А.П. Продольно-крутильные волны в нелинейно-упругих стержнях // Тр. МИАН. 2023. Т. 322. С. 157–166.
  2. Dafermos C.M. Hyperbolic Conservation Laws in Continuum Physics. Berlin Heidelberg: Springer-Verlag, 2010.
  3. Lax P.D. Hyperbolic systems of conservation laws// Comm. Pure Appl. Math. 1957. V. 10. P. 537–566.
  4. Куликовский А.Г., Свешникова Е.И. Нелинейные волны в упругих средах. М.: Московский лицей, 1998. C. 412.
  5. Гельфанд И.М. Некоторые задачи теории квазилинейных уравнений // Успехи матем. наук. 1959. Т. 14.№2. С. 87–158.
  6. Beljadid A., LeFloch P.G., Mishra S., Pares C. Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form // Comm. Comput. Phys. 2017. V. 21.№4. P. 913–946.
  7. Hayes B.T., Lefloch P.G. Nonclassical shocks and kinetic relations: Finite difference schemes // SIAM J. Numeric. Analys. 1998. V. 35.№6. P. 2169–2194.
  8. Chalons C., LeFloch P.G. Computing undercompressive waves with the randomchoice scheme // Nonclassical shock waves. Interfaces and Free Boundaries. 2003. V. 5.№2. P. 129–158.
  9. Shargatov V.A., Chugainova A.P., Kolomiytsev G.V., Nasyrov I.I., Tomasheva A.M., Gorkunov S.V., Kozhurina P.I. Why stable finite-difference schemes can converge to different solutions: analysis for the generalized hopf equation // Computation. 2024. V. 12.№4. P. 76.
  10. Куликовский А.Г., Чугайнова А.П. О структурах неклассических разрывов в решениях гиперболических систем уравнений // УМН. 2022. Т. 77.№1. С. 55–90.
  11. Ахиезер А.И., Любарский Г.Я., Половин Р.В. Об устойчивости ударных волн в магнитной гидродинамике // ЖЭТФ. 1959. Т. 35.№3. С. 731–737.
  12. Полехина Р.Р., Савенков Е.Б. Применение схемы с хорошо контролируемой дисспацией для решения уравнений модели Капилы // Дифференц. ур-ния. 2024. Т. 60.№7. С. 937–953.
  13. Cockburn B., Chi-Wang Shu. The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws // ESAIM: Math. Model. and Numeric. Analys. 1991. Т. 25.№3. С. 337–361.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025