Preparation of New Hybrid Materials SiO2@Melamine-Cyanurate as Precursors of Graphite-Like Carbon Nitride

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This work describes the use of silica particles obtained by sol-gel method as a templat for deposition of supramolecular complexes of melamine cyanurate. To obtain SiO2@melamine-cyanurate (SiO2@MCA) material, the method of covalent modification of silica surface by melamine molecules (SiO2-mel) was applied and the method of its further functionalization by hydrogen-bonded organic framework of melamine-cyanurate (HOF, MCA) was proposed. One of the promising directions of using SiO2@melamine-cyanurate is obtaining SiO2@g-C3N4 material on its basis. Control of the amount of applied melamine-cyanurate allows to potentially obtain g-C3N4 layers of different thicknesses on the silica surface.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

М. Lebedev

Ivanovo State University of Chemistry and Technology

Хат алмасуға жауапты Автор.
Email: MaximLebedev37@gmail.com
Ресей, Ivanovo, 153000

A. Goncharenko

Ivanovo State University of Chemistry and Technology

Email: MaximLebedev37@gmail.com
Ресей, Ivanovo, 153000

I. Skvortsov

Ivanovo State University of Chemistry and Technology

Email: ivanskvortsov@mail.ru
Ресей, Ivanovo, 153000

M. Kuzmikov

Ivanovo State University of Chemistry and Technology; Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: MaximLebedev37@gmail.com
Ресей, Ivanovo, 153000; Ivanovo, 153045

A. Vashurin

Ivanovo State University of Chemistry and Technology

Email: MaximLebedev37@gmail.com
Ресей, Ivanovo, 153000

Әдебиет тізімі

  1. Murugan Arunachalapandi, Selvaraj Mohana Roopan // High Energ. Chem. 2022. V. 56. № 2. P. 73. https://doi.org/10.1134/S0018143922020102
  2. Raaja Rajeshwari M., Kokilavani S., Sudheer Khan S. // Chemosphere. 2022. V. 291. P. 132735. https://doi.org/10.1016/j.chemosphere.2021.132735
  3. Cao L., Li Y., Zheng Z. // Russ. J. Phys. Chem. 2022. V. 96. № 5. P. 1112. https://doi.org/10.1134/S0036024422050193
  4. Zhurenok A.V., Larina T.V., Markovskaya D.V. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 157. https://doi.org/10.1016/j.mencom.2021.03.004
  5. Nemiwal M., Zhang T.C., Kumar D. // Sci. Total Environ. 2021. V. 767. P. 144896. https://doi.org/10.1016/j.scitotenv.2020.144896
  6. Sohail M., Anwar U., Taha T.A. et al. // Arab. J. Chem. 2022. V. 15. № 9. P. 104070. https://doi.org/10.1016/j.arabjc.2022.104070
  7. Mohamed N.A., Safaei J., Ismail A.F. et al. // Appl. Surf. Sci. 2019. V. 489. P. 92. https://doi.org/10.1016/j.apsusc.2019.05.312
  8. Zhao X., Liu Q., Li X. et al. // Chin. Chem. Lett. 2023. V. 34. № 11. P. 108306. https://doi.org/10.1016/j.cclet.2023.108306
  9. Dolai S., Bhunia S.K., Kluson P. et al. // ChemCatChem. 2022. V. 14. № 4. P. E202101299. https://doi.org/10.1002/cctc.202101299
  10. Zhurenok A.V., Vasilchenko D.B., Kozlova E.A. // Int. J. Mol. Sci. 2023. V. 24. № 1. P. 346. https://doi.org/10.3390/ijms24010346
  11. Vasilchenko D., Zhurenok A., Saraev A. et al. // Chem. Eng. J. 2022. V. 445. P. 136721. https://doi.org/10.1016/j.cej.2022.136721
  12. Jun Y.-S., Lee E.Z., Wang X. et al. // Adv. Funct. Mater. 2013. V. 23. № 29. P. 3661. https://doi.org/10.1002/adfm.201203732
  13. Niu H., Zhao W., Lv H. et al. // Chem. Eng. J. 2021. V. 411. P. 128400. https://doi.org/10.1016/j.cej.2020.128400
  14. Shalom M., Inal S., Fettkenhauer C. et al. // J. Am. Chem. Soc. 2013. V. 135. № 19. P. 7118. https://doi.org/10.1021/ja402521s
  15. Vu N.-N., Nguyen C.-C., Kaliaguine S. et al. // ChemSusChem. 2019. V. 12. № 1. P. 291. https://doi.org/10.1002/cssc.201802394
  16. Lisichkin G.V., Olenin A.Yu. // Russ. J. Gen. Chem. 2021. V. 91. № 5. P. 870. https://doi.org/10.1134/S1070363221050182
  17. Zuo B., Li W., Wu X. et al. // Chem. Asian J. 2020. V. 15. № 8. P. 1248. https://doi.org/10.1002/asia.202000045
  18. Vashurin A.S., Boborov A.V., Botnar A.A. et al. // ChemChemTech. 2023. V. 66. № 7. P. 76. https://doi.org/10.6060/ivkkt.20236607.6840j
  19. Goncharenko A.A., Tarasyuk I.A., Marfin Y.S. et al. // Molecules. 2020. V. 25. № 17. P. 3802. https://doi.org/10.3390/molecules25173802
  20. Lin B., Xue C., Yan X. et al. // Appl. Surf. Sci. 2015. V. 357. P. 346. https://doi.org/10.1016/j.apsusc.2015.09.041
  21. Sun S., Li C., Sun Z. et al. // Chem. Eng. J. 2021. V. 416. P. 129107. https://doi.org/10.1016/j.cej.2021.129107
  22. Peng L., Li Z., Zheng R. et al. // J. Mater. Res. 2019. V. 34. № 10. P. 1785. https://doi.org/10.1557/jmr.2019.113
  23. Wang W., Fang J., Chen H. // J. Alloys Compd. 2020. V. 819. P. 153064. https://doi.org/10.1016/j.jallcom.2019.153064
  24. Wang X., Wang S., Hu W. et al. // Mater. Lett. 2014. V. 115. P. 53. https://doi.org/10.1016/j.matlet.2013.10.016
  25. Bogush G.H., Tracy M.A., Zukoski C.F. // J. Non-Cryst. Solids. 1988. V. 104. № 1. P. 95. https://doi.org/10.1016/0022-3093(88)90187-1
  26. Stöber W., Fink A., Bohn E. // J. Colloid Interface Sci. 1968. V. 26. № 1. P. 62. https://doi.org/10.1016/0021-9797(68)90272-5
  27. Appaturi J.N., Jothi Ramalingam R., Al-Lohedan H.A. // J. Porous Mater. 2018. V. 25. № 2. P. 629. https://doi.org/10.1007/s10934-017-0481-3
  28. Adam F., Hello K.M., Osman H. // Appl. Catal., A. 2010. V. 382. № 1. P. 115. https://doi.org/10.1016/j.apcata.2010.04.040
  29. Rahman I.A., Vejayakumaran P., Sipaut C.S. et al. // Mater. Chem. Phys. 2009. V. 114. № 1. P. 328. https://doi.org/10.1016/j.matchemphys.2008.09.068
  30. Szekeres M., Tóth J., Dékány I. // Langmuir. 2002. V. 18. № 7. P. 2678. https://doi.org/10.1021/la011370j
  31. Xu J., Li K., Deng H. et al. // Fibers Polym. 2019. V. 20. № 1. P. 120. https://doi.org/10.1007/s12221-019-8284-6
  32. Sangeetha V., Kanagathara N., Sumathi R. et al. // J. Mater. 2013. V. 2013. P. E262094. https://doi.org/10.1155/2013/262094
  33. He L., Liu Y., Lin M. et al. // Sens. & Instrumen. Food Qual. 2008. V. 2. № 1. P. 66. https://doi.org/10.1007/s11694-008-9038-0

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. SEM images of materials: a – SiO2-MCA 25%; b – SiO2-MCA 50%.

Жүктеу (421KB)
3. Fig. 2. Thermograms of MCA, SiO2-MCA 50% and SiO2-MCA 25%.

Жүктеу (322KB)
4. 3. X-ray diffractograms of MCA, SiO2-MCA 50% and SiO2-MCA 25%.

Жүктеу (196KB)
5. Fig. 4. IR spectra of MCA, SiO2-mel, SiO2-MCA 25% and SiO2-MCA 50%.

Жүктеу (323KB)
6. Fig. 5. Raman spectra of MCA, SiO2-mel, SiO2-MCA 25% and SiO2-MCA 50%.

Жүктеу (352KB)

© Russian Academy of Sciences, 2024