Spatial Computer Model of the UCl3–NaCl–MgCl2–PuCl3 Isobaric Phase Diagram

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A four-dimensional (4D, in concentration–temperature coordinates) computer model of the isobaric phase diagram of uranium, sodium, magnesium, and plutonium chlorides, as well as four three-dimensional (3D) computer models of the phase diagrams of the ternary systems forming it, has been constructed. The technology of assembling a 4D model of 46 hypersurfaces and 17 phase regions was used in the design. The obtained 4D model of the UCl3–NaCl–MgCl2–PuCl3 phase diagram makes it possible to visualize a four-dimensional object as a whole (with all its hypersurfaces and phase regions) by any arbitrarily given 2D and 3D sections, as well as it is able to reproduce published (experimental or thermodynamically calculated) 2D sections. The scope of application of the results of the work is the development of materials for fuel components of fourth-generation molten salt reactors and pyrochemical recycling of spent fuel rods. For the first time, a comprehensive, complete description of phase diagrams composed of uranium, plutonium, sodium, and magnesium chlorides has been obtained.

Авторлар туралы

V. Vorob’eva

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

A. Zelenaya

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

V. Lutsyk

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

M. Lamueva

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

Әдебиет тізімі

  1. Yin H., Wu S., Wang X. et al // J. Fluor. Chem. 2019. V. 217. P. 90. https://doi.org/10.1016/j.jfluchem.2018.09.008
  2. Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 250. https://doi.org/10.31857/S0044457X21020070
  3. Mourogov A., Bokov P.M. // Energy Convers. Manage. 2006. V. 47. P. 2761. https://doi.org/10.1016/j.enconman.2006.02.013
  4. Pelton A.D., Chartrand P. // Metall. Mater. Trans. A. 2001. V. 32A. P. 1361. https://doi.org/10.1007/s11661-001-0227-2
  5. Trnovcova V., Garashina L.S., Skubla A. et al // Solid State Ionics. 2003. V. 157. P. 195. https://doi.org/10.1016/S0167-2738(02)00209-6
  6. Федоров П.П., Бучинская И.И., Бондарева О.С. и др. // Журн. неорган. химии. 2000. Т. 45. № 6. С. 1054.
  7. Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 375. P. 202. https://doi.org/10.1016/j.jnucmat.2008.01.007
  8. Beneš O. Thermodynamics of Molten Salts for Nuclear Applications. PhD, Diss. Prague, Chech Rep. 2008. 205 p.
  9. Bulavin L., Plevachuk Yu., Sklyarchuk V. et al. // J. Nucl. Mater. 2013. V. 433. P. 329. https://doi.org/10.1016/j.jnucmat.2012.08.045
  10. Yin H., Wu X., Ling C. et al. // CALPHAD. 2022. V. 77. 102427. https://doi.org/10.1016/j.calphad.2022.102427
  11. Yin H., Lin J., Hu B. et al. // CALPHAD. 2020. V. 70. 101783. https://doi.org/10.1016/j.calphad.2020.101783
  12. Yingling J.A., Schorne-Pinto J., Aziziha M. et al. // J. Chem. Thermodyn. 2023. V. 179. 106974. https://doi.org/10.1016/j.jct.2022.106974
  13. Beneš O., van der Meer J.P.M., Konings R.J.M. // CALPHAD. 2007. V. 31. P. 209. https://doi.org/10.1016/j.calphad.2006.12.004
  14. Beneš O., Konings R.J.M. // J. Nucl. Mater. 2008. V. 377. P. 449. https://doi.org/10.1016/j.jnucmat.2008.04.004
  15. Beneš O., Konings R.J.M. // CALPHAD. 2008. V. 32. P. 121. https://doi.org/10.1016/j.calphad.2007.07.006
  16. van der Meer J.P.M., Konings R.J.M., Oonk H.A.J. // J. Nucl. Mater. 2006. V. 357. P. 48. https://doi.org/10.1016/j.jnucmat.2006.05.042
  17. Савчук Р.Н., Файдюк Н.В., Омельчук А.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 6. С. 780. https://doi.org/10.7868/S0044457X1406018X
  18. Пономарев Л.И., Серегин М.Б., Михаличенко А.А. и др. // Атомная энергия. 2012. Т. 112. № 6. С. 341.
  19. Masset P., Konings R.J.M., Malmbeck R. et al. // J. Nucl. Mater. 2005. V. 344. P. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
  20. Murakami T., Rodrigues A., Ougier M. et al. // J. Nucl. Mater. 2015. V. 466. P. 502. https://doi.org/10.1016/j.jnucmat.2015.08.045
  21. Ghosh S., Ganesan R., Sridharan R. et al. // Thermochim. Acta. 2017. V. 653. P. 16. https://doi.org/10.1016/j.tca.2017.03.024
  22. Воробьева В.П., Зеленая А.Э., Луцык В.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1090. https://doi.org/10.31857/S0044457X23600524
  23. Fredrickson G.L., Yoo T.-S. // J. Nucl. Mater. 2020. V. 528. P. 151883. https://doi.org/10.1016/j.jnucmat.2019.151883
  24. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // J. Phase Equilib. Diffus. 2021. V. 42. P. 175. https://doi.org/10.1007/s11669-021-00863-3
  25. Prince A. Alloy Phase Equilibria. Amsterdam–London–New York: Elsevier Publ. Comp., 1966. 290 p.
  26. Connell R.G. // J. Phase Equilib. Diffus. 1994. V. 15. № 1. P. 6. https://doi.org/10.1007/s11669-021-00863-3
  27. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25. https://doi.org/10.1007/s10973-010-0855-0
  28. Lukas H.L., Henig E.T., Petzow G. // Z. Metallkd. 1986. V. 77. P. 360.

© В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, М.В. Ламуева, 2023