Structure and Properties of Ti–C–Ni–Al Wear-Resistant Coatings Obtained by HIPIMS Method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Coatings obtained by high-power impulse magnetron sputtering (HIPIMS) were tested using a 64% Ti–16% C–14% Ni–6% Al target (42.5 at % Ti, 42.5 at % C, 7.5 at % Ni, 7.5 at % Al). The microstructure and composition of the coatings were studied using scanning electron microscopy, optical emission spectroscopy of a glow discharge, and X-ray phase analysis. Coatings were studied in terms of their hardness, modulus of elasticity, elastic recovery, resistance to elastic fracture strain, resistance to plastic deformation, friction coefficient and friction-slip wear resistance, resistance to shock-dynamic loading, as well as oxidation resistance. Field tests of coatings on the cutting tool were carried out. Properties of the coatings obtained by direct current and high-power pulse mode were compared. The results showed that the Ti–C–Ni–Al coatings had a dense homogeneous structure, a hardness of 12–26 GPa, an elastic modulus of 143–194 GPa, an elastic recovery of 66–90%, a low friction coefficient of 0.24–0.4, and high oxidation resistance at 800°C. The coating deposited according to the optimal regime confirmed its high practical efficiency during full-scale tests, reducing the cutting tool wear by ~25%.

作者简介

M. Zasypkin

National University of Science and Technology MISIS, 119049, Moscow, Russia

Email: alina-sytchenko@yandex.ru
Россия, 119049, Москва, Ленинский проспект, 4с1

A. Sytchenko

National University of Science and Technology MISIS, 119049, Moscow, Russia

Email: alina-sytchenko@yandex.ru
Россия, 119049, Москва, Ленинский проспект, 4с1

F. Kiryukhantsev-Korneev

National University of Science and Technology MISIS, 119049, Moscow, Russia

编辑信件的主要联系方式.
Email: alina-sytchenko@yandex.ru
Россия, 119049, Москва, Ленинский проспект, 4с1

参考

  1. Fukui H. // SEI technical review. 2016. V. 82. P. 39–45.
  2. Mahboobeh A., Aghdam S.R., Ahangarani A. et al. // Advanced Materials Research. 2014. M. 829. № 476.
  3. Chen L., Wang S.Q., Zhou S.Z. et al. // International J. Refractory Metals and Hard Materials. 2008. V. 26. P. 456–460.
  4. Akinribide O.J., Obadele B.A., Akinwamide S.O. et al. // Ceramics International. 2019. V. 45. P. 21077–21090.
  5. Xiao M., Zhang Y., Wu Y. et al. // International J. Refractory Metals and Hard Materials. 2021. V. 101. № 105672.
  6. Shmorgun V.G., Bogdanov A.I., Kulevich V.P. et al. // Materials Today: Proceedings. 2021. V. 38. P. 1627–1630.
  7. Chaliyawala H.A., Gupta G., Kumar P. et al. // Surface and Coatings Technology. 2015. V. 276. P. 431–439.
  8. Ma M., Sun W.-C., Zhang Y.-G. et al. // Materials Research. 2019. V. 22. № e20190530.
  9. Grandin M., Nedfors N., Sundberg J. et al. // Surface and Coatings Technology. 2015. V. 276. P. 210–218.
  10. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Shvindina N.V. et al. // Ceramics International. 2018. V. 44. P. 7637–7646.
  11. Kiryukhantsev-Korneev Ph.V., Sheveyko A.N., Vorotilo S.A., Levashov E.A. // Ceramics International. 2020. V. 46. P. 1775–1783.
  12. Bao Y., Huang L., An Q. et al. // J. European Ceramic Society. 2020. V. 40. P. 4381–4395.
  13. Krysina O.V., Ivanov Yu.F., Koval N.N. et al. // Surface and Coatings Technology, 2021. V. 416. № 127153.
  14. Amudha A., Nagaraja H.S., Shashikala H.D. // Physica B: Condensed Matter. 2021. V. 602. № 412409.
  15. Bolelli G., Colella A., Lusvarghi L. et al. // Wear. 2020. V. 450–451. № 203273.
  16. Abegunde O., Akinlabi E., Oladijo P. // Materials Today: Proceedings. 2021. V. 44. P. 1221–1226.
  17. Chen Y., Wu G., He J. // Materials Science and Engineering: C. 2015. V. 48. P. 41–47.
  18. Singh A., Schipmann S., Mathur A. et al. // Applied Surface Science. 2017. V. 414. P. 114–123.
  19. Abegunde O.O., Akinlabi E.T., Oladijo O.P. // Applied Surface Science. 2020. V. 520. № 146323.
  20. Tudose I.V., Suchea M.P. // Functional Nanostructured Interfaces for Environmental and Biomedical Applications. 2019. P. 15–26.
  21. Baghriche O., Zertal A., Ehiasarian A.P. et al. // Thin Solid Films. 2012. V. 520. P. 3567–3573.
  22. Sytchenko A.D., Kiryukhantsev-Korneev Ph.V. // J. Phys.: Conf. Ser. 2021. V. 2064. № 012062.
  23. Souček P., Hnilica J., Klein P. et al. // Surface and Coatings Technology. 2021. V. 423. № 127624.
  24. Helmersson U., Lattemann M., Bohlmark J. et al. // Thin Solid Films. 2006. V. 513. P. 1–24.
  25. Kiryukhantsev-Korneev Ph.V., Sytchenko A.D., Sviridova T.A. et al. // Surface and Coatings Technology. 2022. № 128141.
  26. Musil J., Zeman P. // Solid State Phenomena. 2007. V. 4. P. S6–S10.
  27. Papa F., Gerdes H., Bandorf R. et al. // Thin Solid Films. 2011. V. 520. P. 1559–1563.
  28. Шевцова Л.И. Дис. к-та техн. наук: 05.16.09. НГТУ. 2015. 200 с.
  29. Shtansky D.V., Kiryukhantsev-Korneev Ph.V., Sheveyko A.N. et al. // Surface and Coatings Technology. 2009. V. 203. P. 3595–3609.
  30. André B., Lewin E., Jansson U., Wiklund U. // Wear. 2011. V. 270. P. 555–566.
  31. Pang X., Shi L., Wang P. et al. // Surface and Coatings Technology. 2009. V. 203. P. 1537–1543.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (643KB)
3.

下载 (255KB)
4.

下载 (211KB)
5.

下载 (252KB)
6.

下载 (395KB)
7.

下载 (1002KB)
8.

下载 (423KB)
9.

下载 (923KB)
10.

下载 (48KB)
11.

下载 (591KB)
12.

下载 (35KB)

版权所有 © М.А. Засыпкин, А.Д. Сытченко, Ф.В. Кирюханцев-Корнеев, 2023