Патогенетические предикторы осложнений новой коронавирусной инфекции SARS-COV-2
- Авторы: Чепур С.В.1, Плужников Н.Н.1, Чубарь О.В.1, Бакулина Л.С.2, Литвиненко И.В.3, Тюнин М.А.1, Мясникова И.А.1, Пугач В.А.1
-
Учреждения:
- Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
- Воронежская государственная медицинская академия им. академика Н.Н. Бурденко Минздрава России
- Военно-медицинская академия им. С.М. Кирова Минобороны России
- Выпуск: Том 145, № 3 (2025)
- Страницы: 193-215
- Раздел: Статьи
- Статья получена: 21.09.2025
- Статья опубликована: 15.06.2025
- URL: https://rjraap.com/0042-1324/article/view/690975
- DOI: https://doi.org/10.31857/S0042132425030016
- EDN: https://elibrary.ru/hoamxy
- ID: 690975
Цитировать
Полный текст



Аннотация
Оценены патологические процессы, способствующие локальным (в месте инвазии) и системным (тромботические и фибротические проявления) осложнениям новой коронавирусной инфекции. Проанализированы особенности интернализации вируса в клетки, S-протеин-зависимые биохимические процессы, формирующие воспалительные и барьерные реакции. При исследовании вариантов уклонения вируса от систем иммунологического контроля обращено внимание на раз- общение фагоцитоза с литическими процессами, компартментализованными в лизосомах, при проникновении SARS-CoV-2 в клетки, а также на разноуровневое подавление интерферонового ответа. COVID-19 выступает мощным стрессогенным фактором, что сопряжено с нарастанием в крови кортизола, катехоламинов и лактата. В условиях гипоксии отмечены отклонения в протекании метаболических процессов и рецепции сигнальных молекул. Прослежено перераспределение ионизированного железа в прогрессии вирусного процесса и формировании его осложнений. Важную роль в формировании клеточных повреждений и перестроек структуры тканей играет системная воспалительная реакция и иммунотромбоз, сопряженный с формированием внеклеточных нейтрофильных ловушек, как формы апоптотической гибели клеток. Оценено значение метилирования ДНК, появления мобильных генетических элементов и некодирующих РНК. Формирование структурных изменений во многом сопряжено с фиброзированием, реализуемым, в частности, посредством активируемого вирусом эпителиально-мезенхимального перехода, локальная и системная коррекция которого снизит риск осложнений инфекционного процесса.
Об авторах
С. В. Чепур
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
Н. Н. Плужников
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
О. В. Чубарь
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
Л. С. Бакулина
Воронежская государственная медицинская академия им. академика Н.Н. Бурденко Минздрава России
Email: gniiivm_2@mil.ru
Воронеж, Россия
И. В. Литвиненко
Военно-медицинская академия им. С.М. Кирова Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
М. А. Тюнин
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
И. А. Мясникова
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
В. А. Пугач
Государственный научно-исследовательский испытательный институт военной медицины Минобороны России
Автор, ответственный за переписку.
Email: gniiivm_2@mil.ru
Санкт-Петербург, Россия
Список литературы
- Андрусишина И.Н., Важничая Е.М., Донченко Е.А. и др. Средство для лечения перегрузки организма железом или гемахроматоза. Патент RU 2557959. Опуб. 27.07.2015 г.
- Усова Е.В., Копанцева М.Р., Егоров В.И. и др. Белки SNAl1 и SNAl2 – транскрипционные мастер-регуляторы эпителиально-мезенхимального перехода // Патол. физиол. эксперим. терап. 2015. Т. 59 (2). С. 76–87.
- Чепур С.В., Плужников Н.Н., Чубарь О.В. и др. Молочная кислота: динамика представлений о биологии лактата // Успехи соврем. биол. 2021. Т. 141 (3). С. 227–247.
- Черняк Б.В., Попова Е.Н., Приходько А.С. и др. COVID-19 и окислительный стресс // Биохимия. 2020. Т. 85 (12). С. 1816–1828.
- Шаварова Е.К., Казахмедов Э.Р., Алексеева М.В. и др. Роль антиоксидантной терапии у пациентов с новой коронавирусной инфекцией COVID-19 среднетяжелого и тяжелого течения // Инф. болезни. 2021. Т. 19 (1). С. 159–164.
- Abdelrahman Z., Li M., Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses // Front. Immunol. 2020. V. 11. P. 552909.
- Ackermann M., Anders H.-J., Bilyy R. et al. Patients with COVID-19: in the dark-NETs of neutrophils // Cell Death. Differ. 2021. V. 28 (11). P. 3125–3139.
- Akaike T., Suga M., Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO // Proc. Soc. Exp. Biol. Med. 1998. V. 217 (1). P. 64–73.
- Al-Beltagi S., Preda C.A., Goulding L.V. et al. Thapsigargin is a broad-spectrum inhibitor of major human respiratory viruses: coronavirus, respiratory syncytial virus and influenza A virus // Viruses. 2021. V. 13 (2). P. 234.
- Ali R.A., Gandhi A.A., Meng H. et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome // Nat. Commun. 2019. V. 10 (1). P. 1916.
- Al-Kuraishy H.M., Al-Gareeb A.I., Qusti S. et al. COVID-19-induced dysautonomia: a mеnace of sympathetic storm // ASN Neuro. 2021. V. 13. P. 17590914211057635.
- Amini A.A., Karimi J., Talebi S.S., Piri H. The association of COVID-19 and reactive oxygen species modulator 1 (ROMO 1) with oxidative stress // Chonnam. Med. J. 2022. V. 58 (1). P. 1–5.
- Amiri-Dashatan N., Koushki M., Parsamanesh N., Chiti H. Serum cortisol concentration and COVID-19 severity: a systematic review and meta-analysis // J. Invest. Med. 2022. V. 70 (3). P. 766–772.
- Anoop U.R., Verma K. Happy hypoxemia in COVID-19 – a neural hypothesis // ACS Chem. Neurosci. 2020. V. 11 (13). P. 1865–1867.
- Aomatsu K., Arao T., Sugioka K. et al. TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line // Invest. Ophthalmol. Vis. Sci. 2011. V. 52 (5). P. 2437–2443.
- Archer S., Sharp W., Weir E.K. Differentiating COVID-19 pneumonia from acute respiratory distress syndrome and high altitude pulmonary edema: therapeutic implications // Circulation. 2020. V. 142 (2). P. 101–104.
- Arman K., Dalloul Z., Bozgeyik E. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics // Gene. 2023. V. 861. P. 147232.
- Arrieta F., Martinez-Vaello V., Bengoa N. et al. Stress hyperglycemia and Osteocalcin in COVID-19 critically ill patients on artificial nutrition // Nutrients. 2021. V. 13 (9). P. 3010.
- Assiri A.M., Alamaa T., Elenezi F. et al. Unveiling the clinical spectrum of post-COVID-19 conditions: assessment and recommended strategies // Cureus. 2024. V. 16 (1). P. e52827.
- Atabati E., Dehghani-Samani A., Mortazavimoghaddam S.G. Association of COVID-19 and other viral infections with interstitial lung disease, pulmonary fibrosis, and pulmonary hypertension: a narrative review // Can. J. Respir. Ther. 2020. V. 56. P. 1–9.
- Aydemir M.N., Aydemir H.B., Korkmaz E.M. et al. Computationally predicted SARS-CoV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways // Gene Rep. 2021. V. 22. P. 101012.
- Barabutis N. Unfolded protein response in lung health and disease // Front. Med. 2020. V. 7. P. 344.
- Barbu E.A., Mendelsohn L., Samsel L., Thein S.L. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises // Cytokine. 2020. V. 127. P. 154933.
- Barriere G., Fici P., Gallerani G. et al. Epithelial mesenchymal transition: a double-edged sword // Clin. Trans. Med. 2015. V. 4. P. 14.
- Bartoszewski R., Dabrowski M., Jakiela B. et al. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs // Am. J. Physiol. Lung Cell Mol. Physiol. 2020. V. 319 (3). P. L444–L455.
- Battistelli C., Diederich M., Keane T.J. et al. Editorial: Molecular mechanisms and new therapeutic targets in epithelial to mesenchymal transition (EMT) and fibrosis // Front. Pharmacol. 2020. V. 10. P. 1556.
- Baum J., Duffy H.S. Fibroblasts and myofibroblasts: what are we talking about? // J. Cardiovasc. Pharmacol. 2011. V. 57 (4). P. 376–379.
- Bektemur G., Bozali K., Colak S. et al. Oxidative stress, DNA damage, and inflammation in COVID-19 patients // North Clin. Istanb. 2023. V. 10 (3). P. 335–340.
- Beltrán-Garcia J., Osca-Verdegal R., Pallardo F. et al. Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of antioxidant therapy in avoiding disease progression // Antioxidants. 2020. V. 9 (10). P. 936.
- Bergamaschi G., Borrelli de Andreis F., Aronico N. et al. Anemia in patients with COVID-19: pathogenesis and clinical significance // Clin. Exp. Med. 2021. V. 21 (2). P. 239–246.
- Berger J.M., Singh P., Khrimian L. et al. Mediation of the acute stress response by the skeleton // Cell Metab. 2019. V. 30 (5). P. 890–902.
- Bohr C., Hasselbalch K., Krogh A.S. Uber einen in biologischer Beziehung wichtigen Einfluβ, den die Kohlensäurespannung des blutes auf dessen Sauerstoffbindung übt // Skand. Arch. Physiol. 1904. V. 16 (2). P. 402–412.
- Borges L., Pithon-Curi T., Curi R., Hatanaka E. COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps // Mediators Inflamm. 2020. V. 2020. P. 8829674.
- Borretzen A., Gravdal K., Haukaas S.A. et al. FOXC2 expression and epithelial-mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer // J. Pathol. Clin. Res. 2019. V. 5 (4). P. 272–286.
- Brown C.J., Ballabio A., Rupert J.I. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome // Nature. 1991. V. 349 (6304). P. 38–44.
- Burnham E.L., Janssen W.J., Riches D.W.H. et al. The fibroproliferative response in acute respiratory distress syndrome: mechanism and clinical significance // Eur. Respir. J. 2014. V. 43 (1). P. 276–285.
- Busana M., Gasperetti A., Giosa L. et al. Prevalence and outcome of silent hypoxemia in COVID-19 // Minerva Anestesiol. 2021a. V. 87 (3). P. 325–333.
- Busana M., Giosa L., Cressoni M. et al. The impact of ventilation-perfusion inequality in COVID-19: a computational model // J. Appl. Physiol. 2021b. V. 130 (3). P. 865–876.
- Cabana-Dominguez J., Arenas C., Cormand B., Fernández-Castillo N. MiR-9, miR-153 and miR-124 are down-regulated to cocaine in a dopaminergic cell model and may contribute to cocaine dependence // Transl. Psychiatry. 2018. V. 8. P. 173.
- Cabrera-Benitez N.E., Laffey J.G., Parotto M. et al. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome // Anesthesiology. 2014. V. 121 (1). P. 189–198.
- Cajanding R.J.M. Silent hypoxia in COVID-19 pneumonia: state of knowledge, pathophysiology, mechanisms, and management // AACN Adv. Crit. Care. 2022. V. 33 (2). P. 143–153.
- Cameron M.J., Bermejo-Martin J.F., Danesh A. et al. Human immunopathogenesis of severe acute respiratory syndrome (SARS) // Virus Res. 2008. V. 133 (1). P. 13–19.
- Cantuti-Castelvetri L., Ojha R., Pedro L.D. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity // Science. 2020. V. 370 (6518). P. 856–860.
- Capaldo C.T., Farkas A.E., Nusrat A. Epithelial adhesive junctions // F1000Prime Rep. 2014. V. 6. P. 1.
- Carpene G., Onorato D., Nocini R. et al. Blood lactate concentration in COVID-19: a systematic literature review // Clin. Chem. Lab. Med. 2021. V. 60 (3). P. 332–337.
- Carr A.C., Maggini S. Vitamin C and immune function // Nutrients. 2017. V. 9 (11). P. 1211.
- Cavezzi A., Troiani E., Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review // Clin. Pract. 2020. V. 10 (2). P. 1271.
- Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin. Immunopathol. 2017. V. 39 (5). P. 529–539.
- Chen D., Tang H., Jiang H. et al. ACPA alleviates bleomycin-induced pulmonary fibrosis by inhibiting TGF-β-Smad2/3 signaling-mediated lung fibroblast activation // Front. Pharmacol. 2022. V. 13. P. 835979.
- Chen H.-C., Zhu Y.-T., Chen S.-Y., Tseng C.G. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition // Lab. Invest. 2012. V. 92 (5). P. 676–687.
- Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13 // Blood. 2010. V. 115 (3). P. 706–712.
- Chen L., Alam A., Pac-Soo A. et al. Pretreatment with valproic acid alleviates pulmonary fibrosis through epithelial-mesenchymal transition inhibition in vitro and in vivo // Lab. Invest. 2021. V. 101 (9). P. 1166–1175.
- Chen L., Zhu Y., Zhou J. et al. Luteolin alleviates epithelial-mesenchymal transformation induced by oxidative injury in ARPE-19 cell via Nrf2 and AKT/GSK-3β pathway // Oxid. Med. Cell Longev. 2022. V. 2022. P. 2265725.
- Chen X., Wang K., Xing Y. et al. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity // Protein Cell. 2014. V. 5 (12). P. 912–927.
- Chen X., Zhao B., Qu Y. et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019 // Clin. Infect. Dis. 2020. V. 71 (8). P. 1937–1942.
- Cheng F.-Y., Lee Y.-H., Hsu Y.-H. et al. Promising therapeutic effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and FoxO1 // Aging (Albany NY). 2019. V. 11 (21). P. 9875–9892.
- Cheng R.Z. A hallmark of COVID-19: cytokine storm/oxidative stress and its integrative mechanism // Orthomolecular Medicine News Service. 2022. URL: https://orthomolecular.org/resources/omns/v18n03.shtml (дата обращения: 09.11.2024)
- Cherayil B.J. The role of iron in the immune response to bacterial infection // Immunol. Res. 2011. V. 50 (1). P. 1–9.
- Cheresh P., Kim S.-J., Tulasiram S., Kamp D.W. Oxidative stress and pulmonary fibrosis // Biochim. Biophys. Acta. 2013. V. 1832 (7). P. 1028–1040.
- Clausen T.M., Sandoval D.R., Spliid C.B. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2 // Cell. 2020. V. 183 (4). P. 1043–1057.
- Coco M., Buscemi A., Pennisi E. et al. Postural control and stress exposure in young men: changes in cortisol awakening response and blood lactate // Int. J. Environ. Res. Public Health. 2020. V. 17 (19). P. 7222.
- Colston J.T., Chandrasekar B., Freeman G.L. A novel peroxide-induced calcium transient regulates interleukin-6 expression in cardiac-derived fibroblasts // J. Biol. Chem. 2002.V. 277 (26). P. 23477–23483.
- Cottam E.M., Maier H.J., Manifava M. et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate // Autophagy. 2011. V. 7 (11). P. 1335–1347.
- Cubillo E., Diaz-Lopez A., Cuevas E.P. et al. E47 and Id1 interplay in epithelial-mesenchymal transition // PLoS One. 2013. V. 8 (3). P. e59948.
- Dai X., Xin Y., Xu W. et al. CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells // Sci. China Life Sci. 2021. V. 64 (4). P. 563–574.
- Daly J.L., Simonetti B., Klein K. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection // Science. 2020. V. 370 (6518). P. 861–865.
- Das D.K., Engelman R.M., Liu X. et al. Oxygen-derived free radicals and hemolysis during open heart surgery // Mol. Cell Biochem. 1992. V. 111 (1–2). P. 77–86.
- Daskou M., Abadi L.F., Gain C. et al. The role of the NRF2 pathway in the pathogenesis of viral respiratory infections // Pathogens. 2024. V. 13 (1). P. 39.
- Davies J.P., Sivadas A., Keller K.R. et al. SARS-CoV-2 nonstructural proteins 3 and 4 tune the unfolded protein response // bioRxiv. 2023. V. 2023. P. 537917.
- De Vuono S., Cianci P., Berisha S. et al. The PaCO2/FiO2 ratio as outcome predictor in SARS-CoV-2 related pneumonia: a retrospective study // Acta Biomed. 2022. V. 93 (5). P. e202256.
- Devaraj V., Bose B. Morphological state transition dynamics in EGF-induced epithelial to mesenchymal transition // J. Clin. Med. 2019. V. 8 (7). P. 911.
- Dhont S., Derom E., Van Braeckel E. et al. The pathophysiology of “happy” hypoxemia in COVID-19 // Respir. Res. 2020. V. 21 (1). P. 198.
- Di Gregorio J., Robuffo I., Spalletta S. et al. The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders // Front. Cell Dev. Biol. 2020. V. 8. P. 607483.
- Dikic I., Elazar Z. Mechanism and medical implications of mammalian autophagy // Nat. Rev. Mol. Cell Biol. 2018. V. 19 (6). P. 349–364.
- Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A. et al. Pathological evidence of pulmonary thrombotic pneumonia in severe COVID-19 // J. Thromb. Haemost. 2020. V. 18 (6). P. 1517–1519.
- Dolskiy A.A., Gudymo A.S., Taranov O.S. et al. The tissue distribution of SARS-CoV-2 in transgenic mice with inducible ubiquitous expression of hACE2 // Front. Mol. Biosci. 2022. V. 8. P. 821506.
- Dyer L.A., Patterson C. Development of the endothelium: an emphasis on heterogeneity // Semin. Thromb. Hemost. 2010. V. 36 (3). P. 227–235.
- Ehsani S. COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein // Biol. Direct. 2020. V. 15 (1). P. 19.
- Elbarbary R.A., Lucas B.A., Maquat L.E. Retrotransposons as regulators of gene expression // Science. 2016. V. 351 (6274). P. aac7247.
- Engreitz J.M., Sirokman K., McDonel P. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites // Cell. 2014. V. 159 (1). P. 188–199.
- Estornut C., Milara J., Bayarri M.A. et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis // Front. Pharmacol. 2022. V. 12. P. 794997.
- Evans W.H., Martin P.E.M. Gap junctions: structure and function (Review) // Mol. Membr. Biol. 2002. V. 19 (2). P. 121–136.
- Fan H., Yang F., Xiao Z. et al. Lactylation: novel epigenetic regulatory and therapeutic opportunities // Am. J. Physiol. Endocrinol. Metab. 2023. V. 324 (4). P. E330–E338.
- Fan Q., Qiu M.T., Zhu Z. et al. Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway // Oncol. Rep. 2015. V. 34 (4). P. 1787–1794.
- Fang J.S., Hultgren N.W., Hughes C.W. Regulation of partial reversible endothelial-to-mesenchymal transition in angiogenesis // Front. Cell Dev. Biol. 2021. V. 9. P. 702021.
- Feschotte C. Transposable elements and the evolution of regulatory networks // Nat. Rev. Genet. 2008. V. 9 (5). P. 397–405.
- Ferdousi M., Finn D.P. Stress-induced modulation of pain: role of the endogenous opioid system // Prog. Brain Res. 2018. V. 239. P. 121–177.
- Ferrara J.L. Cytokine dysregulation as a mechanism of graft versus host disease // Curr. Opi. Immunol. 1993. V. 5 (5). P. 794–799.
- Forrest M.P., Waite A.J., Martin-Rendon E., Blake D.J. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation // PLoS One. 2013. V. 8 (8). P. e73169.
- Förster C. Tight junctions and the modulation of barrier function in disease // Histochem. Cell Biol. 2008. V. 130 (1). P. 55–70.
- Fouad L., Lafta F.M., Khashman B.M. Host`s DNA methylation alterations accompanying COVID-19 infection. A review article // Microb. Sci. Arch. 2023. V. 3 (3). P. 87–93.
- Franke W.W., Grund C., Kuhn C., Jackson B.W. Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments // Differentiation. 1982. V. 23 (1). P. 43–59.
- Fuchs E. Scratching the surface of skin development // Nature. 2007. V. 445 (7130). P. 834–842.
- Fulzele S., Sahay B., Yusufu I. et al. COVID-19 virulence in aged patients might be impacted by the host cellular microRNAs abundance/profile // Aging Dis. 2020. V. 11 (3). P. 509–522.
- Fung S.Y., Siu K.L., Lin H. et al. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1 // Cell Biosci. 2022. V. 12 (1). P. 36.
- Fung T.S., Liu D.X. Coronavirus infection, ER stress, apoptosis and innate immunity // Front. Microbiol. 2014. V. 5. P. 296.
- Gairola S., Sinha A., Kaundal R. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues // Inflammopharmacology. 2024. V. 32 (1). P. 287–305.
- Ganley I.G., Wong P.M., Gammoh N., Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest // Mol. Cell. 2011. V. 42 (6). P. 731–743.
- Ganz T. Hepcidin and iron regulation, 10 years later // Blood. 2011. V. 117 (17). P. 4425–4433.
- García-Sastre A., Biron C.A. Type I interferons and the virus-host relationship: a lesson in détente // Science. 2006. V. 312 (5775). P. 879–882.
- Gassen N.C., Niemeyer D., Muth D. et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-coronavirus infection // Nat. Commun. 2019. V. 10 (1). P. 5770.
- Gassen N.C., Papies J., Bajaj T. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals // Nat. Commun. 2021. V. 12 (1). P. 3818.
- Gelfand M.V., Hagan N., Tata A. et al. Neurpilin-1 functions as a VEGER2 co-receptor to guide developmental angiogenesis independent of ligand binding // Elife. 2014. V. 3. P. e03720.
- George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy // Lancet Respir. Med. 2020. V. 8 (8). P. 807–815.
- Glinka Y., Stoilova S., Mohammed N., Prudhomme G.J. Neuropillin-1 exerts co-receptor function for TGF-beta-1 on the membrane cancer cells and enhances responses to both latent and active TGF-beta // Carcinogenesis. 2011. V. 32 (4). P. 613–621.
- Goel S., Saheb Sharif-Askari F., Saheb Sharif Askari N. et al. SARS-CoV-2 switches “on” MAPK and NF-κB signaling via the reduction of nuclear DUSP1 and DUCP5 expression // Front. Pharmacol. 2021. V. 12. P. 631879.
- Gonzáles-Duarte A., Norcliffe-Kaufmann L. Is “happy hypoxia” in COVID-19 a disorder of autonomic interoception? A hypothesis // Clin. Auton. Res. 2020. V. 30 (4). P. 331–333.
- Gould T.J., Vu T.T., Swystun L.L. et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms // Arterioscler. Thromb. Vasc. Biol. 2014. V. 34 (9). P. 1977–1984.
- Greenburg G., Hay E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells // L. Cell Biol. 1982. V. 95 (1). P. 333–339.
- Gu W., Gan H., Ma Y. et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity // Virol. J. 2022. V. 19 (1). P. 49.
- Gubbi S., Nazari M.A., Taieb D. et al. Catecholamine physiology and its implications in patients with COID-19 // Lancet Diabet. Endocrinol. 2020. V. 8 (12). P. 978–986.
- Gubernatorova E.O., Gorshkova E.A., Polinova A.I., Drutskaya M.S. IL-6: relevance for immunopathology of SARS-CoV-2 // Cyt. Growth Fact. Rev. 2020. V. 53. P. 13–24.
- Gudowska-Sawczuk M., Mroczko B. The role of neuropilin-1 (NRP1) in SARS-CoV-2 infection: review // J. Clin. Med. 2021. V. 10 (13). P. 2772.
- Guo J., Yang Z., Jia Q. et al. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in rat silicosis model // Toxicol. Lett. 2019. V. 300. P. 59–66.
- Gupta Y., Maciorowski D., Medernach B. et al. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: natura nihil frustra facit // J. Cell. Biochem. 2022. V. 123 (3). P. 601–619.
- Haase V.H. Oxygen regulates epithelial-to-mesenchymal transition: insights into molecular mechanisms and relevance to disease // Kidney Int. 2009. V. 76 (5). P. 492–499.
- Habib H.M., Ibrahim S., Zaim A., Ibrahim W.H. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators // Biomed. Pharmacother. 2021. V. 136. P. 111228.
- Haller O., Kochs G., Weber F. The interferon response circuit: induction and suppression by pathogenic viruses // Virology. 2006. V. 344 (1). P. 119–130.
- Han J., Weisbrod R.M., Shao D. et al. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: glutathionylation of Rac1 in endothelial cells // Redox Biol. 2016. V. 9. P. 306–319.
- Han Y., Luo Y., Wang Y. et al. Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway // Oncol. Lett. 2016. V. 11 (1). P. 753–759.
- Hanrahan K., O`Neill A., Prencipe M. et al. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer // Mol. Oncol. 2017. V. 11 (3). P. 251–265.
- Hao W., Yu T.-T., Zuo D.-Z. et al. Stevioside attenuates bleomycin-induced pulmonary fibrosis by activating the Nrf2 pathway and inhibiting NF-κB and TGF-β1/Smad2/3 pathways // Exp. Lung Res. 2023. V. 49 (1). P. 205–219.
- Hartwell K.A., Muir B., Reinhardt F. et al. The Spemann organizer gene, goosecoid, promotes tumor metastasis // PNAS USA. 2006. V. 103 (50). P. 18969–18974.
- Hay E.D. Organization and fine structure of epithelium and mesenchyme in the developing chick embryo // Epithelial-mesenchymal interactions: Proceedings of the 18th Hahnemann Symposium / Ed. by Freischmajer R., Billingham R. Baltimore: Williams and Wilkins. Co, 1968. P. 31–55.
- Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: immunopathology in COVID-19 // Arthr. Rheumatol. 2020. V. (7). P. 1059–1063.
- Henderson N.C., Rieder F., Wynn T.A. Fibrosis: from mechanisms to medicines // Nature. 2020. V. 587 (7835). P. 555–566.
- Hennet T., Richter C., Peterhans E. Tumor necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells // Biochem. J. 1993. V. 289 (Pt 2). P. 587–592.
- Herrmann J., Mori V., Bates J.H.T., Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia // Nat. Commun. 2020. V. 11 (1). P. 4883.
- Hibbs J.B., Westenfelder C., Taintor R. et al. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy // J. Clin. Invest. 1992. V. 89 (3). P. 867–877.
- Hoffman M., Klein-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. V. 181 (2). P. 271–280.e8.
- Hosseini A., Stojkov D., Fettrelet T. et al. Transcriptional insight of oxidative stress and extracellular traps in lung tissues of fatal COVID-19 cases // Int. J. Mol. Sci. 2023. V. 24 (3). P. 2646.
- Hou P., Wang X., Wang H. et al. The OEF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication // Autophagy. 2023. V. 19 (2). P. 551–569.
- Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. V. 395 (10223). P. 497–506.
- Huang R., Xu M., Zhu H. et al. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2 // Nat. Biotechnol. 2021. V. 39 (6). P. 747–753.
- Huoman J., Sayyab S., Apostolou E. et al. Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 in vivo and in vitro // Epigenetics. 2022. V. 17 (13). P. 1875–1891.
- Huoman J., Sayyab S., Apostolou E. et al. Mild SARS-CoV-2 infection modifies DNA methylation of peripheral blood mononuclear cells from COVID-19 convalescents // MedRxiv. ID: ppzbmed-10.1101.2021. 07.05.21260014.
- Ibrahim Fouad G., R. Mousa M. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats // Mol. Cell. Biochem. 2021. V. 476 (9). P. 3433–3448.
- Ihara H., Mitsuishi Y., Kato M. et al. Nintedanib inhibits epithelial-mesenchymal transition in A459 alveolar epithelial cells through regulation of the TGF-β/Smad pathway // Respir. Investig. 2020. V. 58 (4). P. 275–284.
- Ito J., Sugimoto R., Nakaoka H. et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses // PLoS Genet. 2017. V. 13 (7). P. e1006883.
- Ivanov A.V., Bartosch B., Isaguliants M.G. Oxidative stress in infection and consequent disease // Oxid. Med. Cell Longev. 2017. V. 2017. P. 3496043.
- Jeon M.J., Kim W.G., Lim S. et al. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells // Mol. Cell Endocrinol. 2016. V. 419. P. 113–123.
- Jiang J.C., Upton K.R. Human transposons are an abundant supply of transcription factor binding sites and promoter activities in breast cancer cell lines // Mob. DNA. 2019. V. 10 (1). P. 16.
- Jo M., Lester R.D., Montel V. et al. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling // J. Biol. Chem. 2009. V. 284 (34). P. 22825–22833.
- Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs // RNA. 2014. V. 20 (7). P. 959–976.
- Kalluri R., Neilson E.G. Epithelial-mesenchymal transition and its implications for fibrosis // J. Clin. Invest. 2003. V. 112 (12). P. 1776–1784.
- Karakike E., Giamarellos-Bourboulis E.J., Kyprianou M. et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis // Crit. Cara Med. 2021. V. 49 (12). P. 2042–2057.
- Karla R.S., Kandimalla R. Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection // Sign. Transduct. Target Ther. 2021. V. 6 (1). P. 39.
- Keller C., Böttcher-Friebertshäuser E., Lohoff M. TMPRSS2, a novel host-directed drug target against SARS-CoV-2 // Signal Transduct. Target Ther. 2022. V. 7 (1). P. 251.
- Kennedy C.C., Brown E.E., Abutaleb N.O., Truskey G.A. Development and application of endothelial cells derived from pluripotent stem cells in microphysiological systems models // Front. Cardiovasc. Med. 2021. V. 8. P. 625016.
- Khan P., Manna A., Saha S. et al. Aspirin inhibits epithelial-mesenchymal transition and migration of oncogenic K-ras-expressing non-small cell lung carcinoma cells by down-regulating E-cadherin repressor Slug // BMC Cancer. 2016. V. 16. P. 39.
- Kharazmi A., Nielsen H., Rechnitzer C., Bendtzen K. Interleukin 6 primes human neutrophil and monocyte oxidative burst response // Immunol. Lett. 1989. V. 21 (2). P. 177–184.
- Khomich O.A., Kochetkov S.N., Bartosch B., Ivanov A.V. Redox biology of respiratory viral unfections // Viruses. 2018. V. 10 (8). P. 392.
- Kiesslich T., Pichler M., Neureiter D. Epigenetic control of epithelial-mesenchymal transition in human cancer // Mol. Clin. Oncol. 2013. V. 1 (1). P. 3–11.
- Kim D.H., Xing T., Yang Z. et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview // J. Clin. Med. 2017. V. 7 (1). P. 1.
- Kim H., Jun I., Yoon J.S. et al. Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure // Pflüg. Arch. 2015. V. 467 (11). P. 2243–2256.
- Koch B.F. SARS-CoV-2 and human retroelements: a case for molecular mimicry? // BMC Genom Data. 2022. V. 23 (1). P. 27.
- Kobayashi S., Nishimura M., Yamomoto M. et al. Relationship between breathlessness and hypoxic and hypercapnic ventilatory response in patients with COPD // Eur. Respir. J. 1996. V. 9 (11). P. 2340–2345.
- Kong D., Wang Z., Sarkar S.H. et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells // Stem Cells. 2008. V. 26 (6). P. 1425–1435.
- Kunzelmann K., Nilins B., Owsianik G. et al. Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramlase // Pflüg Arch. 2014. V. 466 (3). P. 407–414.
- Kurt E., Bahadirli S. Prognostic value of blood gas lactate levels among COVID-19 patients who visited to emergency department // J. Health Sci. Med. 2021. V. 4 (4). P. 493–497.
- Kusaczuk M., Bartoszewicz M., Cechowska-Pasko M. Phenylbutyric acid: simple structure – multiple effects // Curr. Pharm. Des. 2015. V. 21 (16). P. 2147–2166.
- Kyuno D., Takasawa A., Kikuchi S. et al. Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells // Biochim. Biophys. Acta Biomembr. 2021. V. 1863 (3). P. 183503.
- Lage S.L., Amaral E.P., Hilligan K.L. et al. Persistent oxidative stress and inflammasome activation in CDhighCD16– monocites from COVID-19 patients // Front. Immunol. 2022. V. 12. P. 799558.
- Lai X., Li Q., Wu F. et al. Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming // Front. Cell Dev. Biol. 2020. V. 8. P. 760.
- Lai Y.-J., Chao C.-H., Liao C.-C. et al. Epithelial-mesenchymal transition induced by SARS-CoV-2 required transcriptional upregulation of Snail // Am. J. Cancer Res. 2021. V. 11 (5). P. 2278–2290.
- Lanser L., Burkert F.R., Bellmann-Weiler R. et al. Dynamics in anemia development and dysregulation of iron homeostasis in hospitalized patients with COVID-19 // Metabolites. 2021. V. 11 (10). P. 653.
- Lechowicz K., Droźdźal S., Machaj F. et al. COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection // J. Clin. Med. 2020. V. 9 (6). P. 1917.
- Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown to save lives // Nature. 2020. V. 582 (7813). P. 469.
- Lee C.H. Reversal of epithelial-mesenchymal transition by natural anti-inflammatory and pro-resolving lipids // Cancers. 2019. V. 11 (12). P. 1841.
- Lee K., Nelson C.M. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis // Int. Rev. Cell Mol. Biol. 2012. V. 294. P. 171–221.
- Lee Y.Y., Park H.H., Park W. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2- mediated neutrophil activities and cytokine storm // Biomaterials. 2021. V. 267. P. 120389.
- Leisman D.E., Mehta A., Thompson B.T. et al. Alveolar, endothelial, and organ injury marker dynamics in severe COVID-19 // Am. J. Respir. Crit. Care Med. 2022. V. 205 (5). P. 507–519.
- Li C., Wang R., Wu A. et al. SARS-CoV-2 as potential microRNA sponge in COVID-19 patients // BMC Med. Genomics. 2022. V. 15 (Suppl. 2). P. 94.
- Li H., Xu L., Zhao L. et al. Insulin-like growth factor-I induces epithelial to mesenchymal transition via GSK-3β and ZEB2 in the BGC-823 gastric cancer cell line // Oncol. Lett. 2015. V. 9 (1). P. 143–148.
- Li L., Zhuang Y., Zhao X., Li X. Long non-coding RNA in neuronal development and neurological disorders // Front. Genet. 2019. V. 9. P. 744.
- Li L.F., Kao K.C., Liu Y.Y. et al. Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway // J. Cell Mol. Med. 2017. V. 21 (11). P. 2937–2949.
- Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26 (6). P. 842–844.
- Liberale L., Holy E.W., Akhmedov A. et al. Interleukin-1β mediates arterial thrombus formation via NET-associated tissue factor // J. Clin. Med. 2019. V. 8 (12). P. 2072.
- Lillie F.R. The development of the chick – an introduction to embryology. New York: Henry Holt and Co. 1908. 472 p.
- Lim D.H., Maher E.R. DNA methylation: a form of epigenetic control of gene expression // Obstetr. Gynaecol. 2010. V. 12. P. 37–42.
- Lim S., Zhang M., Chang T.L. ACE2-independent alternative receptors for SARS-CoV-2 // Viruses. 2022. V. 14 (11). P. 2535.
- Lippi G., Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019 // Hematol. Transfus. Cell Ther. 2020. V. 42 (2). P. 116–117.
- Liu Q.L., Luo M., Huang C. et al. Epigenetic regulation of epithelial to mesenchymal transition in the cancer metastatic cascade: implications for cancer therapy // Front. Oncol. 2021. V. 11. P. 657546.
- Liu X., Li T., Chen et al. Role and intervention of PAD4 in NETs in acute respiratory distress syndrome // Respir. Res. 2024. V. 25 (1). P. 63.
- Liu X., Xiong W., Ye M. et al. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets // Signal Transduct. Target Ther. 2023. V. 8 (1). P. 441.
- Loh C.-Y., Chai J.Y., Tang T.F. et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challen- ges // Cells. 2019. V. 8 (10). P. 1118.
- Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis // Sci. Rep. 2021. V. 11. P. 16144.
- López-Novoa J.M., Nieto M.A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression // EMBO Mol. Med. 2009. V. 1 (6–7). P. 303–314.
- Lovisa S. Epithelial-to-mesenchymal transition in fibrosis: concepts and targeting strategies // Front. Pharmacol. 2021. V. 12. P. 737570.
- Lynch J.P., White E., Flaherty K. Corticosteroids in idiopathic pulmonary fibrosis // Curr. Opin. Pulm. Med. 2001. V. 7 (5). P. 298–308.
- Maghsadi Z, Azadmehr A., Moghadamnia A.A. et al. N-acetylcysteine attenuated pulmonary fibrosis induced bleomycin via immunomodulation responses // Res. Pharm. Sci. 2023. V. 18 (2). P. 177–184.
- Mahler D.A., Murray J.A., Waterman L.A. et al. Endogenous opioids modify dyspnoea during treadmill exercise in patients with COPD // Eur. Respir. J. 2009. V. 33 (4). P. 771–777.
- Mantlo E., Bukreyeva N., Maruyama J. et al. Antiviral activities of type I interferons to SARS-CoV-2 infection // Antiviral Res. 2020. V. 179. P. 104811.
- Marik P.E., Bellomo R. Stress hyperglycemia: an essential survival response! // Crit. Care. 2013. V. 17 (2). P. 305.
- Marconi G.D., Fonticoli L., Rajan T.S. et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis // Cells. 2021. V. 10 (7). P. 1587.
- Martin-Rojas R.M., Chasco-Ganuza M., Casanova-Prieto S. et al. A mild deficiency of ADAMTS13 is associated with severity in COVID-19: comparison of the coagulation profile in critically and noncritically ill patients // Blood Coagul. Fibrinolysis. 2021. V. 32 (7). P. 458–467.
- Mayi B.S., Leibowitz J.A., Woods A.T. et al. The role of neuropilin-1 in COVID-19 // PLoS Pathog. 2021. V. 17 (1). P. e1009153.
- McComsey G.A., Yau L. Asymptomatic hyperlactataemia: predictive value, natural history and correlates // Antivir. Ther. 2004. V. 9 (2). P. 205–212.
- McDonald O.G., Wu H., Timp W. et al. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition // Nat. Struct. Mol. Biol. 2011. V. 18 (8). P. 867–874.
- McNally J.S., Saxena A., Cai H. et al. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium // Arterioscler. Thromb. Vasc. Biol. 2005. V. 25 (8). P. 1623–1628.
- Mehta P., McAuley D.F., Brown M. et al. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. V. 395 (10229). P. 1033–1034.
- Menshawey R., Menshawey E., Alserr A.H.K., Abdelmassih A.F. Low iron mitigates viral survival: insights from evolution, genetics, and pandemics – a review of current hypothesis // Egypt. J. Med. Hum. Genet. 2020. V. 21 (1). P. 75.
- Meyer-Schaller N., Heck C., Tiede S. et al. Foxf2 plays role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration // Breast Cancer Res. 2018. V. 20 (1). P. 118.
- Milewska A., Zarebski M., Nowak P. et al. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells // J. Virol. 2014. V. 88 (22). P. 13221–13230.
- Milewska A., Nowak P., Owczarek K. et al. Entry of human coronavirus NL63 into the cell // J. Virol. 2018. V. 92 (3). P. e01933-17.
- Miripour Z.S., Sarrami-Forooshani R., Sanati H. et al. Real-time diagnosis of rective oxygen species (ROS) in fresh sputum by electrochemical tracing; correlation between COVID-19 and viral-induced ROS in lung/respiratory epithelium during this pandemic // Biosens. Bioelectron. 2020. V. 165. P. 112435.
- Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge // Eur. Respir. J. 2020. V. 55 (6). P. 2001217.
- Montazersahed S., Hosseiniyan Khatabi S.M., Hejazi M.S. et al. COVID-19 infection: an overview on cytokine storm and related interventions // Virol. J. 2022. V. 19 (1). P. 92.
- Morin-Surun M.P., Boudinot E., Fournie-Zaluski M.C. et al. Control of breathing by endogenous opioid peptides: possible involvement in sudden death syndrome // Neurochem. Int. 1992. V. 20 (1). P. 103–107.
- Moustaqil M., Ollivier E., Chiu H.P. et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species // Emerg. Microb. Infect. 2021. V. 10 (1). P. 178–195.
- Moutal A., Martin L., Boinon L. et al. SARS-CoV-2 spike protein co-opts VEGF-A/Neuropilin-1 receptor signsling to induce analgesia // Pain. 2021. V. 162 (1). P. 243–252.
- Moyret-Lalle C., Ruiz E., Puisieux A. Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeon” of breast cancer // World J. Clin. Oncol. 2014. V. 5 (5). P. 311–322.
- Muhl L., Folestad E.B., Gladh H. et al. Neuropilin 1 binds PDGF-D and is a co-receptor in PDGF-D-PDGFRβ signaling // J. Cell Sci. 2017. V. 130 (8). P. 1365–1378.
- Mukhopadhyay S., Sinha S., Mohapatra S.K. Analysis of transcriptomic data sets supports the role of IL-6 in NETosis and immunothrombosis in severe COVID-19 // BMC Genom. Data. 2021. V. 22 (1). P. 49.
- Naidu S.A.G., Clemens R.A., Naidu A.S. SARS-CoV-2 infection dysregulates host iron Ife)-redox homeostasis (Fe-R-H): role of Fe-redox regulators, ferroptosis, inhibitors, anticoagulants, and iron-chelators in COVID-19 control // J. Diet. Suppl. 2023. V. 20 (2). P. 312–371.
- Nakao N., Kurokawa T., Nonami T. et al. Hydrogen peroxide induces the production of tumor necrosis factor-alpha in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase // Innate Immun. 2008. V. 14 (3). P. 190–196.
- Neeb Z.T., Ritter A.J., Chauhan L.V. et al. A potential role for SARS-CoV-2 small viral RNAs in targeting host microRNAs and modulating gene expression // Sci. Rep. 2022. V. 12 (1). P. 21694.
- Nemeth E., Rivera S., Gabayan V. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin // J. Clin. Invest. 2004. V. 113 (9). P. 1271–1276.
- Nemeth J., Schundner A., Quast K. et al. A novel fibroblast reporter cell line for in vitro studies of pulmonary fibrosis // Front. Physiol. 2020. V. 11. P. 567675.
- Neufeldt C.J., Cerikan B., Cortese M. et al. SARS-CoV-2 infection induces pro-inflammatory cytokine response through cGAS-STING and NF-κB // Commun. Biol. 2022. V. 5 (1). P. 45.
- Nowotschin S., Hadjantonakis A.-K., Campbell K. The endoderm: a divergent cell lineage with many commonalities // Development. 2019. V. 146 (11). P. dev150920.
- Nusrat A., Parkos C.A., Bacarra A.E. et al. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium // J. Clin. Invest. 1994. V. 93 (5). P. 2056–2065.
- Ojo A.S., Balogun S.A., Williams O.T., Ojo O. Pulmonary fibrosis in COVID-19 survivors: predictive factors and risk reduction strategies // Pulm. Med. 2020. V. 2020. P. 6175964.
- Ono H., Imoto I., Kozaki K. et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation // Oncogene. 2012. V. 31 (47). P. 4923–4934.
- Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure // Blood. 2006. V. 107 (2). P. 528–534.
- Ottestad W., Søvik S. COVID-19 patients with respiratory failure: what can we learn from aviation medicine? // Br. J. Anaesth. 2020. V. 125 (3). P. e280–e281.
- Pal R., Banerjee M. Cortisol and COVID-19 – putting undue stress on the “Stress Hormone” // US Endocrinology. 2020. V. 16 (2). P. 66–67.
- Pandolfi L., Bozzini S., Frangipane V. et al. Neutrophil extracellular traps induce the epithelial-mesenchymal transition: implications in post-COVID-19 fibrosis // Front. Immunol. 2021. V. 12. Art. 663303.
- Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps // J. Cell. Biol. 2010. V. 191 (3). P. 677–691.
- Park H.H., Park W., Lee Y.Y. et al. Bioinspired DNase-I-coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation // Adv. Sci. 2021. V. 8 (19). P. e2103748.
- Pasquier J., Abu-Kaoud N., Al Thani H., Rafii A. Epithelial to mesenchymal transition in a clinical perspective // J. Oncol. 2015. V. 2015. P. 792182.
- Pastushenko I., Brisebarre A., Sifrim A. et al. Identification of the tumor transition states occurring during EMT // Nature. 2018. V. 556 (7702). P. 463–468.
- Pastushenko I., Blanpain C. EMT transition states during tumor progression and metastasis // Trends Cell Biol. 2019. V. 29 (3). P. 212–226.
- Patel P., West-Mays J., Kolb M. et al. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells // Matrix Biol. 2010. V. 29 (2). P. 97–106.
- Patra T., Meyer K., Geerling L. et al. SARS-CoV-2 spike protein promotes IL-6 transsignaling by activation of angiotensin II receptor signaling in epithelial cells // PLoS Pathog. 2020. V. 16 (12). P. e1009128.
- Pavlova E., Genova-Kalou P., Dyankov G. Susceptibility of SARS COV-2 nucleocapsid and spike proteins to reactive oxygen species and role in inflammation // Anal. Biochem. 2023. V. 670. P. 115137.
- Peng J., Xiao X., Li S. et al. Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOP-mediated autophagy pathway // Exp. Gerontol. 2023. V. 172. P. 112085.
- Perdomo J., Leung H.H.L. Immune thrombosis: exploring the significance of immune complexes and NETosis // Biology. 2023. V. 12 (10). P. 1332.
- Peyssonnaux C., Zinkernagel A.S., Datta V. et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens // Blood. 2006. V. 107 (9). P. 3727–3732.
- Pi P., Zeng Z., Zeng L. et al. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition // Front. Pharmacol. 2023. V. 14. P. 1218059.
- Pimentel-Muiños F.X., Boada-Romero E. Selective autophagy against membranous compartments: canonical and unconventional purposes and mechanisms // Autophagy. 2014. V. 10 (3). P. 397–407.
- Plowman T., Lagos D. Non-coding RNAs in COVID-19: emerging insights and current questions // Noncoding RNA. 2021. V. 7 (3). P. 54.
- Prasad V., Greber U.F. The endoplasmic reticulum unfolded protein response – homeostasis, cell death and evolution in virus infections // FEMS Microbiol. Rev. 2021. V. 45 (5). P. fuab016.
- Qin S., Jin P., Zhou Z. et al. The role of transposable elements in the origin and evolution of microRNAs in human // PLoS One. 2015. V. 10 (6). P. e0131365.
- Qu Y., Wang X., Zhu Y. et al. ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication // Front. Cell Dev. Biol. 2021. V. 9. P. 716208.
- Qvisth V., Hagström-Toft E., Enoksson S., Bolinder J. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of β-adrenoreceptor subtypes // J. Clin. Endocrinol. Metab. 2008. V. 93 (1). P. 240–246.
- Rabouw H.H., Langereis M.A., Knaap R.C.M. et al. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses // PLoS Pathog. 2016. V. 12 (10). P. e1005982.
- Raghu G., Collard H.R., Egan J.J. et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management // Am. J. Respir. Crit. Care Med. 2011. V. 183 (6). P. 788–824.
- Rahman A., Tabassum T., Araf Y. et al. Silent hypoxia in COVID-19: pathomechanism and possible management strategy // Mol. Biol. Rep. 2021. V. 48 (4). P. 3863–3869.
- Rapozzi V., Juarranz A., Habib A. et al. Is haem real target of COVID-19 // Photodiagn. Photodyn. Ther. 2021. V. 35. P. 102381.
- Reza J.N., Gavazzi I., Cohen J. Neuropilin-1 is expressed on adult mammalian dorsal root ganglion neurons and mediates semaphorin3a/collapsing-1-induced growth cone collapse by small diameter sensory afferents // Mol. Cell Neurosci. 1999. V. 14 (4–5). P. 317–326.
- Ribeiro A., Mendonça M., Sousa C.S. et al. Prevalence, presentation and outcomes of silent hypoxemia in COVID-19 // Clin. Med. Insights Circ. Respir. Pulm. Med. 2022. V. 16. P. 11795484221082761.
- Rowles D.L., Tsai Y.C., Greco T.M. et al. DNA methyltransferase DNMR3A associates with viral proteins and impact HSV-1 infection // Proteomics. 2015. V. 15 (12). P. 1968–1982.
- Ruivinho C., Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic // Front. Genet. 2023. V. 14. P. 1216890.
- Saito S., Zhuang Y., Shan B. et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway // PLoS One. 2017. V. 12 (10). P. e0186615.
- Salaris C., Scarpa M., Elli M. et al. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro // Nutrients. 2021. V. 13 (2). P. 328.
- Samuel C.E. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease // J. Biol. Chem. 2023. V. 299 (8). P. 104960.
- Sang E.R., Tian Y., Miller L.C., Sang Y. Epigenetic evolution of ACE2 and IL-6 genes: non-canonical interferon-stimulated genes correlate to COVID-19 susceptibility in vertebrates // Genes. 2021. V. 12 (2). P. 154.
- Santiago J.J., Dangerfield A.L., Rattan S.G. et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts // Dev. Dyn. 2010. V. 239 (6). P. 1573–1584.
- Santiago T.V., Edelman N.H. Opioids and breathing // J. Appl. Physiol. 1985. V. 59 (6). P. 1675–1685.
- Sa Ribero M., Jouvenet N., Dreux M., Nisole S. Interplay between SARS-CoV-2 and type I interferon response // PLoS Pathog. 2020. V. 16 (7). P. e1008737.
- Schönrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression // Adv. Biol. Regul. 2020. V. 77. P. 100741.
- Schulert G.S., Grom A.A. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies // Annu. Rev. Med. 2015. V. 66. P. 145–159.
- Sciacovelli M., Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer // FEBS J. 2017. V. 284 (19). P. 3132–3144.
- Seet L.F., Toh L.Z., Finger S.N. et al. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis // J. Mol. Med. 2016. V. 94 (3). P. 321–334.
- Sekhon K., Bucay N., Majid S. et al. MicroRNAs and epithelial-mesenchymal transition in prostate cancer // Oncotarget. 2016. V. 7 (41). P. 67597–67611.
- Setiawan F., Nurdianto A.R., Rahayu R.P. et al. Acute respiratory distress syndrome (ARDS) as the main causative death in coronavirus disease-19 (COVID-19) patients // Malaysian J. Med. Health Sci. 2023. V. 19. P. 159–165.
- Severinghaus J.W. Oxyhemoglobin dissociation curve for temperature and pH variation in human lood // J. Appl. Physiol. 1958. V. 12 (3). P. 485–486.
- Shaban M.S., Mayr-Buro C., Meier-Soelch J. et al. Thapsigargin: key to new host-directed coronavirus antivirals? // Trends Pharmacol. Sci. 2022. V. 43 (7). P. 557–568.
- Shan T., Li L.-Y., Yang J.-M., Cheng Y. Role and clinical implication of autophagy in COVID-19 // Virol. J. 2023. V. 20 (1). P. 125.
- Shen T., Wang T. Metabolic reprogramming in COVID-19 // Int. J. Mol. Sci. 2021. V. 22 (21). P. 11475.
- Sheng G., Thompson E., Newgreen D., Denker H.W. Twenty years on for the Epithelial-Mesenchymal Transition International Association (TEMTIA): an interview with co-founders Erik Thompson and Donald Newgree // Cells Tissues Organs. 2022. V. 211 (2). P. 252–260.
- Shepley-McTaggart A., Sagum C.A., Oliva I. et al. SARS-CoV-2 envelope (E) protein interacts with PDZ-domain-2 of host tight junctions protein ZO1 // PLoS One. 2021. V. 16 (6). P. e0251955.
- Sim J.-R., Shin D.H., Park P.-G. et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition // Cell Rep. 2022. V. 40 (3). P. 111117.
- Singer B.D. A practical guide to the measurement and analysis of DNA methylation // Am. J. Respir. Cell Mol. Biol. 2019. V. 61 (4). P. 417–428.
- Skendros P., Mitsios A., Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis // J. Clin. Invest. 2020. V. 130 (11). P. 6151–6157.
- Soker S., Takashima S., Miao H.Q. et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor // Cell. 1998. V. 92 (6). P. 735–745.
- Song L., Wang D., Abbas G. et al. The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A attenuating the immune defense of the interferon-stimulated genes // J. Biol. Chem. 2023. V. 299 (3). P. 102990.
- Soriano J.V., Pepper M.S., Nakamura T. et al. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells // J. Cell Sci. 1995. V. 108 (Pt 2). P. 413–430.
- Sorvillo N., Mizurini D.M., Coxon C. et al. Plasma peptidylarginine deiminase IV promotes VWF-platelet string formation and accelerates thrombosis after vessel injury // Circ. Res. 2019. V. 125 (5). P. 507–519.
- South K., Lane D.A. ADAMTS-13 and von Willebrand factor: a dynamic duo // J. Thromb. Haemost. 2018. V. 16 (1). P. 6–18.
- Stetson D.B., Medzhitov R. Antiviral defense: interferons and beyond // J. Exp. Med. 2006. V. 203 (8). P. 1837–1841.
- Stoker M., Perryman M. An epithelial scatter factor released by embryo // J. Cell Sci. 1985. V. 77. P. 209–223.
- Strich J.R., Ramos-Benitez M.J., Randazzo D. et al. Fostamatinib inhibits neutrophils extracellular traps induced by COVID-19 patient plasma: a potential therapeutic // J. Infect. Dis. 2021. V. 223 (6). P. 981–984.
- Suarez-Carmona M., Lesage J., Cataldo D., Gilles C. EMT and inflammation: inseparable actors of cancer progression // Mol. Oncol. 2017. V. 11 (7). P. 805–823.
- Sulpice E., Plouet J., Berge M. et al. Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity // Blood. 2008. V. 111 (4). P. 2036–2045.
- Sultan S., Sultan M. COVID-19 cytokine storm and novel truth // Med. Hypotheses. 2020. V. 144. P. 109875.
- Sun L., Fang J. Epigenetic regulation of epithelial-mesenchymal transition // Cell Mol. Life Sci. 2016. V. 73 (23). P. 4493–4515.
- Sun X., Wang T., Cai D. et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia // Cyt. Growth Factor Rev. 2020. V. 53. P. 38–42.
- Surabhi S., Jachmann L.H., Shumba P. et al. Hydrogen peroxide is crucial for NLRP3 inflammasome-mediated IL-β production and cell death in pneumococcal infections of bronchial epithelial cells // J. Innate Immun. 2022. V. 14 (3). P. 192–206.
- Suzuki A., Maeda T., Baba Y. et al. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model // Cancer Cell Int. 2014. V. 14 (1). P. 129.
- Swenson K.E., Hardin C.C. Pathophysiology of hypoxemia in COVID-19 lung disease // Clin. Chest. Med. 2023. V. 44 (2). P. 239–248.
- Szczepanski A., Owczarek K., Browska M. et al. Canine respiratory coronavirus, bovine coronavirus, and human coronavirus OC43: receptors and attachment factors // Viruses. 2019. V. 11 (4). P. 328.
- Taefehshokr N., Taefehshokr S., Hemmat N., Heit B. COVID-19: perspectives on innate immune evasion // Front. Immunol. 2020. V. 11. P. 580641.
- Tam S.Y., Wu V.W., Law H.K.W. Hypoxia-induced epithe- lial-mesenchymal transition in cancers: HIF-1α and beyond // Front. Oncol. 2020. V. 10. P. 486.
- Tan T., Khoo B., Mills E.G. et al. Association between high serum total cortisol concentrations and mortality from СOVID-19 // Lancet Diabet. Endocrinol. 2020. V. 8 (8). P. 659–660.
- Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // J. Thromb. Haemost. 2020. V. 18 (4). P. 844-847.
- Teijaro J.R. Cytokine storms in infectious diseases // Semin. Immunopathol. 2017. V. 39 (5). P. 501–503.
- Terman G.W., Shavit Y., Lewis J.W. et al. Intrinsic mechanism of pain inhibition: activation by stress // Science. 1984. V. 226 (4680). P. 1270–1277.
- Teka O.F., Mezgebu L., Getahun C. et al. TET proteins and their role in regulation of DNA methylation // Asian J. Biomed. Pharmaceut. Sci. 2022. V. 12 (89). P. 121.
- Tian H., Wang L., Fu T. Ephedrine alleviates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition and restraining NF-κB signaling // J. Toxicol. Sci. 2023. V. 48 (10). P. 547–556.
- Thiam H.R., Wong S.L., Wagner D.D., Waterman C.M. Cellular mechanisms of NETosis // Annu. Rev. Cell Dev. Biol. 2020. V. 36. P. 191–218.
- Thomas S.R., Chen K., Keaney J.F. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via phosphoinositide 3-kinase-dependent signaling pathway // J. Biol. Chem. 2002. V. 277 (8). P. 6017–6024.
- Thuan D.T.B., Zayed H., Eid A.H. et al. A potential link between oxidative stress and endothelial-to-mesenchymal transition in systemic sclerosis // Front. Immunol. 2018. V. 9. P. 1985.
- Torres-Ruiz J., Absalón-Aguilar A., Nuñez-Aguirre M. et al. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity // Cell. 2021. V. 10 (10). P. 2545.
- Treiman M., Caspersen C., Christensen S.B. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases // Trends Pharmacol. Sci. 1998. V. 19 (4). P. 131-135.
- Trendowski M. Exploring the inherent metastasis of leukemia to improve chemotherapeutic approaches // Cell Dev. Biol. 2014. V. 3 (2). P. 1000137.
- Tsujimoto M., Yokota S., Vilcek J., Weissmann G. Tumor necrosis factor provokes superoxide anion generation from neutrophils // Biochem. Biophys. Res. Commun. 1986. V. 137 (3). P. 1094–1100.
- Vallelian F., Schaer C.A., Deuel J.W. et al. Revisiting the putative role of heme as a trigger of inflammation // Pharmacol. Res. Perspect. 2018. V. 6 (2). P. e00392.
- Valles A.M., Boyer B., Badet J. et al. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line // PNAS USA. 1990. V. 87 (3). P. 1124–1128.
- van Otterdijk S.D., Mathers J.C., Strathdee G. Do age-related changes in DNA methylation play a role in the development of age-related diseases? // Biochem. Soc. Trans. 2013. V. 41 (3). P. 803–807.
- Veras F.P., Pontelli M.C., Silva C.M. et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology // J. Exp. Med. 2020. V. 217 (12). P. e20201129.
- Vianello S., Lutoff M.P. In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture // BioRxiv. 2020. URL: https:// www.biorxiv.org/content/10.1101/2020.06.07.138883v3.full.pdf (дата обращения: 09.11.2024)
- Vitale-Cross L., Szalayova I., Scoggins A. et al. SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: сlinical implications // eBioMedicine. 2022. V. 78. P. 103981.
- Wang D., Li S., Chen Y. et al. Sodium thiosulfate inhibits epithelial-mesenchymal transition in melanoma via regulating the Wnt/β-catenin signaling pathway // J. Dermatol. Sci. 2023. V. 109 (2). P. 89-98.
- Wang X., Chen S., Shen T. et al. Trichostatin A reverses epithelial-mesenchymal transition and attenuates invasion and migration in MCF-7 breast cancer cells // Exp. Ther. Med. 2020. V. 19 (3). P. 1687–1694.
- Wang Y., Chen J., Ling M. et al. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation // J. Biol. Chem. 2015. V. 290 (3). P. 1422–1431.
- Wang Y., Luo L., Braun O.Ö. et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice // Sci. Rep. 2018. V. 8 (1). P. 4020.
- Wang Z., Li Y., Kong D., Sarkar F.H. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness // Curr. Drug Targets. 2010. V. 11 (6). P. 745–751.
- Wei C., Wan L., Yan Q. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry // Nat. Metab. 2020. V. (12). P. 1391–1400.
- Wei J.W., Huang K., Yang C., Kang C.S. Non-coding RNAs as regulators in epigenetics // Oncol. Rep. 2017. V. 37 (1). P. 3–9.
- Wei Z., Gao Y., Meng F. et al. iDMer: an integrative and mechanism-driven response system for identifying compound interventions for sudden virus outbreak // Brief. Bioinform. 2021. V. 22 (2). P. 976–987.
- Wenzhong L., Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system // Autoimmunity. 2021. V. 54 (4). P. 213–224.
- WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected 12 January 2020 / WHO. URL: https://iris.who.int/ bitstream/handle/10665/332299/WHO-2019-nCoV-Clinical-2020.1-eng.pdf (дата обращения: 09.11.2024)
- Williams A.E., Chambers R.C. The mercurial nature of neutrophils: still an enigma in ARDS? // Am. J. Physiol. Lung Cell Mol. Physiol. 2014. V. 306 (3). P. L217–L230.
- Willis R.A., Nussler A.K., Fries K.M. et al. Induction of nitric oxide synthase in subset of murine pulmonary fibroblasts: effect on fibroblast interleukin-6 production // Clin. Immunol. Immunopathol. 1994. V. 71 (2). P. 231–239.
- Wollin L., Distler J.H.W., Redente E.F. et al. Potential nintedanib in treatment of progressive fibrosing lung diseases // Eur. Respir. J. 2019. V. 54 (3). P. 1900161.
- Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. V. 367 (6483). P. 1260–1263.
- Wu J., Shi Y., Pan X. et al. ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-limked ubiquitination of NEMO // Cell Rep. 2021. V. 34 (7). P. 108761.
- Wu Q., Hou X., Xia J. et al. Emerging roles of PDGF-D in EMT progression during tumorigenesis // Cancer Treat. Rev. 2013. V. 39 (6). P. 640–646.
- Xia H., Cao Z., Xie X. et al. Evasion of type I interferon by SARS-CoV-2 // Cell Rep. 2020, V. 33 (1). P. 108234.
- Xiao Y., Vermund S.H. DNA methylation in long COVID // Front. Virol. 2024. V. 4. P. 1371683.
- Xu J., Lamouille S., Derynck R. TGF-beta-induced epithelial to mesenchymal transition // Cell Res. 2009. V. 19 (2). P. 156–172.
- Xu L., Fukumura D., Jain R.K. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF // J. Biol. Chem. 2002. V. 277 (13). P. 11368–11374.
- Xu Q., Zhang Q., Ishida Y. et al. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect // Oncotarget. 2017. V. 8 (6). P. 9557–9571.
- Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir. Med. 2020. V. 8 (4). P. 420–422.
- Xue M., Feng L. The role of unfolded protein response in coronavirus infection and its implications for drug design // Front. Microbiol. 2021. V. 12. P. 808593.
- Yadav R., Momin A., Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases // Int. Immunopharmacol. 2023. V. 124 (Pt A). P. 110846.
- Yamamoto N., Kan-O K., Tatsuta M. et al. Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs // Sci. Rep. 2021. V. 11 (1). P. 7222.
- Yamamura S., Imai-Sumida M., Tanaka Y., Dahiya R. Interaction and cross-talk between non-coding RNAs // Cell Mol. Life Sci. 2018. V. 75 (3). P. 467–484.
- Yan Q., Zhang W., Wu Y. et al. KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2 // Oncotarget. 2015. V. 6 (28). P. 25402–25417.
- Yang L., Xie X., Tu Z. et al. The signal pathways and treatment of cytokine storm in COVID-19 // Signal Transduct. Target Ther. 2021. V. 6 (1). P. 255.
- Yang Y., Zhang L., Geng H. et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists // Protein Cell. 2013. V. 4 (12). P. 951–961.
- Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “cytokine storm” in COVID-19 // J. Infect. 2020. V. 80 (6). P. 607–613.
- Yi Z.Y., Feng L.J., Xiang Z., Yao H. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in hepatocellular carcinoma cells // J. Invest. Surg. 2011. V. 24 (2). P. 67–76.
- Yin Y., Liu X.Z., He X., Zhou L.Q. Exogenous coronavirus interacts with endogenous retrotransposon in human cells // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 609160.
- Yoo J.S., Sasaki M., Cho S.X., et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis // Nat. Commun. 2021. V. 12 (1). P. 6602.
- Yoshida K., Choisunirachon N., Saito T. et al. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumor cell line // Res. Vet. Sci. 2014. V. 97 (3). P. 521–526.
- Youn J.Y., Zhang Y., Wu Y. et al. Therapeutic application of estrogen for COVID-19: attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in epithelial cells // Redox Biol. 2021. V. 46. P. 102099.
- Yu M., Liu Y., Xu D. et al. Prediction of the development of pulmonary fibrosis using serial thin-section CT and clinical features in patients discharged after treatment for COVID-19 pneumonia // Korean J. Radiol. 2020. V. 21 (6). P. 746–755.
- Zeisberg M., Neilson E.G. Biomarkers for epithelial-mesenchymal transition // J. Clin. Invest. 2009. V. 119 (6). P. 1429–1437.
- Zhang L., Lei W., Wang X. et al. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibit TGF-β1-induced epithelial-to-mesenchymal transition and cell migration // FEBS Lett. 2010. V. 584 (22). P. 4646–4654.
- Zhang Y., Sun H., Pei R. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes // Cell Discov. 2021. V. 7 (1). P. 31.
- Zhao H., Qin H.Y., Cao L.F. et al. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis // Toxicol. Lett. 2015. V. 232 (1). P. 213–220.
- Zhu H., Chen C.Z., Sakamura S. et al. Mining of high throughput screening database reveals AP-I and autophagy pathways as potential targets for COVID-19 therapeutics // Sci. Rep. 2021. V. 11 (1). P. 6725.
- Zhu Y., Chen X., Liu X. NETosis and neutrophil extracellular traps in COVID-19: immunothrombosis and beyond // Front. Immunol. 2022. V. 13. P. 838011.
- Ziegler C.G.K., Allon S.J., Nyquist S.K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues // Cell. 2020. V. 181 (5). P. 1016–1035.
- Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. V. 5 (11). P. e138999.
Дополнительные файлы
