Extraction of metals from nitrate solutions by deep eutectic solvent di(2,4,4,4-trimethylpentyl)phosphinic acid/phenol

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The qualitative and quantitative composition of NdFeB magnet has been established, the features of metal leaching by nitric acid solution have been studied. Optimal conditions of the process of the most complete leaching of metals were selected. A hydrophobic deep eutectic solvent based on di(2,4,4-trimethylpentyl)phosphinic acid (DTMPPA) and phenol was proposed as an extractant for the extraction of a series of metals from the nitric acid solution of neodymium magnet leaching. Experimental data on the extraction of Ni, Fe, Al and Cu ions from model individual and mixed solutions by deep eutectic solvent DTMPPA/phenol under varying key conditions of the process: acidity of the medium, concentration of the desalting agent, concentration of components in the eutectic solvent, metal concentration, etc. were obtained. The results obtained indicate the promising application of deep eutectic solvent DTMPPA/phenol for the extraction of Ni, Fe, Al and Cu cations in the processes of waste recycling of magnetic materials.

全文:

受限制的访问

作者简介

T. Chikin’eva

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

I. Zinov’eva

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

E. Uvarova

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

A. Milevskaya

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

Yu. Zakhodaeva

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

A. Voshkin

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yz@igic.ras.ru
俄罗斯联邦, Moscow

参考

  1. Önal M.A.R., Aktan E., Borra C.R. et al. Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery // Hydrometallurgy. 2017. V. 167. P. 115.
  2. Liu C., Yan Q., Zhang X. et al. Efficient recovery of end-of-life ndfeb permanent magnets by selective leaching with deep eutectic solvents // Environ Sci Technol. 2020. V. 54. № 16. P. 10370.
  3. Yang Y., Walton A., Sheridan R. et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review // Journal of Sustainable Metallurgy. 2017. V. 3. № 1. P. 122.
  4. Riaño S., Petranikova M., Onghena B. et al. Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets // RSC Adv. 2017. V. 7. № 51. P. 32100.
  5. Zhang Y., Xu X. Predicting Magnetic Remanence of NdFeB Magnets from Composition // J. Supercond. Nov. Magn. 2021. V. 34. № 11. P. 2711.
  6. Brown D., Ma B.M., Chen Z. Developments in the processing and properties of NdFeb-type permanent magnets // J. Magn. Magn. Mater. 2002. V. 248. № 3. P. 432.
  7. Talan D., Huang Q. A review of environmental aspect of rare earth element extraction processes and solution purification techniques // Miner Eng. 2022. V. 179. P. 107430.
  8. Ni S., Gao Y., Yu G. et al. Tailored ternary hydrophobic deep eutectic solvents for synergistic separation of yttrium from heavy rare earth elements // Green Chemistry. 2022. V. 24. № 18. P. 7148.
  9. Cruz K.A.M.L., Rocha F.R.P., Hespanhol M.C. Greener Route for Recovery of High-Purity Lanthanides from the Waste of Nickel Metal Hydride Battery Using a Hydrophobic Deep Eutectic Solvent // ACS Sustain. Chem Eng. 2024. V. 12. № 16. P. 6169.
  10. Ni S., Gao Y., Yu G. et al. A cleaner strategy for comprehensive recovery of waste SmCo magnets based on deep eutectic solvents // Chemical Engineering Journal. 2021. V. 412. P. 128602.
  11. Zinov’eva I.V. Chikineva T.Yu., Zakhodyaeva Yu.A. et al. Bis(2,4,4-trimethylpentyl)phosphinic acid/phenol deep eutectic solvent: Physicochemical properties and application prospects for the extraction of trivalent rare earth elements // J. Mol. Liq. 2025. V. 423. P. 126984.
  12. Martins M.A.R., Pinho S.P., Coutinho J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures // J. Solution Chem. 2019. V. 48. № 7. P. 962.
  13. Gholami S., Pérez-Page M., D’Agostino C. et al. (Deep) eutectic solvents for the separation of platinum group metals and rare earth elements: Characteristics, extraction mechanisms and state of the art // Chemical Engineering Journal. 2025. V. 505. P. 159497.
  14. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V. et al. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide // Int. J. Mol. Sci. 2023. V. 24. № 18. P. 14032.
  15. Babu M.K.S. Katchala N., Natarajan T.S. et al. Nd(III) and Dy(III) extraction from discarded NdFeB magnets using TOPO-based hydrophobic eutectic solvents // J. Mol. Liq. 2024. V. 402. P. 124697.
  16. Yu G., Ni S., Gao Y. et al. Recovery of rare earth metal oxides from NdFeB magnet leachate by hydrophobic deep eutectic solvent extraction, oxalate stripping and calcination // Hydrometallurgy. 2024. V. 223. P. 106209.
  17. Shuping C., Zhihan Z., Dong W. et al. Selective leaching and recovery of rare earth from NdFeB waste through a superior selective and stable deep eutectic solvent // Sep. Purif. Technol. 2025. V. 353. P. 128498.
  18. Belfqueh S., Chapron S., Giusti F. et al. Selective recovery of rare earth elements from acetic leachate of NdFeB magnet by solvent extraction // Sep Purif Technol. 2024. V. 339. P. 126701.
  19. Ogawa K., Tobe N. A Spectrophotometric Study of the Complex Formation between Iron(III) and Sulfosalicylic Acid // Bull. Chem. Soc. Jpn. 1966. V. 39. № 2. P. 223.
  20. Pritchard D.T. Spectrophotometric determination of aluminium in soil extracts with xylenol orange // Analyst. 1967. V. 92. № 1091. P. 103.
  21. Ivanov A.V., Figurovskaya V.N., Ivanov V.M. Molecular absorption-spectroscopy of 4-(2-pyridylazo) resorcinol complexes as an alternative to atomic-absorption spectroscopy // Вестник Московского университета. Серия 2: Химия. 1992. V. 33. № 6. P. 570.
  22. Dupont D., Binnemans K. Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf 2 N] // Green Chemistry. 2015. V. 17. № 4. P. 2150.
  23. Kumari A., Sinha M. K., Pramanik S. et al. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects // Waste Management. 2018. V. 75. P. 486.
  24. Зиновьева И.В., Чикинёва Т.Ю., Яковлева С.А. и др. Экстракция редкоземельных элементов глубоким эвтектическим растворителем ди(2,4,4-триметилпентил)фосфиновая кислота/фенол // Теоретические основы химической технологии. 2024. V. 58. № 6. P. 762.
  25. Lommelen R., Onghena B., Binnemans K. Cation Effect of Chloride Salting Agents on Transition Metal Ion Hydration and Solvent Extraction by the Basic Extractant Methyltrioctylammonium Chloride // Inorg. Chem. 2020. V. 59. № 18. P. 13442.
  26. Deep A., Correia P.F.M., Carvalho J.M.R. Separation and Recovery of Fe(III) and Cr(III) from a Tannery Filtrate using Cyanex 272 // Ind. Eng. Chem. Res. 2006. V. 45. № 9. P. 3200.
  27. Bari M.F. et al. Simultaneous extraction and separation of Cu(II), Zn(II), Fe(III) and Ni(II) by polystyrene microcapsules coated with Cyanex 272 // Hydrometallurgy. 2009. V. 95. № 3–4. P. 308.
  28. Sole K.C., Hiskey J.B. Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301 // Hydrometallurgy. 1995. V. 37. № 2. P. 129.
  29. Bari F., Begum N., Jamaludin S.B. et al. Extraction and separation of Cu(II), Ni(II) and Zn(II) by sol–gel silica immobilized with Cyanex 272 // Hydrometallurgy. 2009. V. 96. № 1–2. P. 140.
  30. Yoshizuka K., Sakomoto Y., Baba Y. et al. Distribution equilibria in the adsorption of cobalt(II) and nickel(II) on Levextrel resin containing Cyanex 272 // Hydrometallurgy. 1990. V. 23. № 2–3. P. 309.
  31. Park K.H., Mohapatra D., Nam C.W. Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272 // J. Hazard Mater. 2007. V. 148. № 1–2. P. 287.
  32. Mohapatra D. et al. Liquid–liquid extraction of aluminium(III) from mixed sulphate solutions using sodium salts of Cyanex 272 and D2EHPA // Sep. Purif. Technol. 2007. V. 56. № 3. P. 311.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the degree of leaching of metals of a neodymium magnet on the concentration of the HNO3 solution at a ratio of solid:liquid = 0.04 g/ml, 4 h, 80ºС.

下载 (213KB)
3. Fig. 2. Dependence of the degree of leaching of metals of a neodymium magnet with a 2 M HNO3 solution on the process temperature at a solid:liquid ratio of 0.04 g/ml, 4 h.

下载 (173KB)
4. Fig. 3. Dependence of the degree of leaching of metals of a neodymium magnet with a 2 M HNO3 solution on the process time, 80ºС, solid:liquid ratio = 0.04 g/ml.

下载 (200KB)
5. Fig. 4. Dependence of the degree of leaching of metals of a neodymium magnet with a 2 M HNO3 solution on the process time, 80ºС, solid:liquid ratio = 0.04 g/ml.

下载 (222KB)
6. Fig. 5. Dependence of the degree of leaching of metals of a neodymium magnet with a 0.5 M HNO3 solution on temperature: solid:liquid ratio = 0.04 g/ml, 5 h.

下载 (191KB)
7. Fig. 6. Dependence of the degree of leaching of metals of a neodymium magnet with a 0.5 M HNO3 solution on the phase ratio: 95ºС, 5 h.

下载 (212KB)
8. Fig. 7. Dependence of the degree of leaching of metals of a neodymium magnet with a 0.5 M HNO3 solution on the process time: 95ºС, solid:liquid ratio = 0.1 g/ml.

下载 (248KB)
9. Fig. 8. Dependence of the degree of extraction of metal ions in the system with DTMPFC/phenol on the concentration of sodium nitrate: [Me]init = 0.01 mol/l, O/B = 1, 25ºС.

下载 (143KB)
10. Fig. 9. Isotherm of metal ion extraction in the system with DES DTMPFC/phenol, O/B = 1, 25ºС.

下载 (165KB)
11. Fig. 10. Dependence of the degree of extraction of metal ions on the ratio of DTMPFC and phenol in DES, [Me]init = 0.01 mol/l, O/V = 1.

下载 (153KB)
12. Fig. 11. Dependence of the degree of extraction of metal ions on the volume ratio of the phases: [Me]init = 0.01 mol/l.

下载 (129KB)
13. Fig. 12. Dependence of the degree of extraction of metal ions from individual solutions on the initial pH value of the aqueous phase: [Me]init = 0.01 mol/l, O/W=1.

下载 (201KB)
14. Fig. 13. Dependence of the degree of extraction of metal ions from a model solution of a mixture of metals on the initial pH value of the aqueous phase with the sequential extraction of one metal at a time from the mixture: [Me]init = 0.01 mol/l, O/W = 1.

下载 (560KB)

版权所有 © Russian Academy of Sciences, 2025