Сравнение температурной и ультразвуковой интенсификации сверхкритической флюидной экстракции на примере семян пастернака посевного

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проведено сравнение температурной и ультразвуковой интенсификации сверхкритической флюидной экстракции на примере семян пастернака посевного, источника растительного масла и фурокумариновых фотосенсибилизаторов. Обнаружено, что даже при давлении 300 бар влияние температуры на процесс экстракции пастернака имеет так называемый ретроградный характер, то есть изобарическое повышение температуры ведет к уменьшению общего массового выхода экстракции и скорости извлечения. Выдвинутая ранее гипотеза о хроматографоподобном протекании процесса сверхкритической экстракции позволяет объяснить закономерности ретроградного поведения, нехарактерного для столь высоких давлений экстракции. Показано, что общий паттерн ультразвуковой интенсификации экстракции подобен температурной. При малом давлении экстракции (100 бар) в условиях принципиальной возможности кавитации поступающего в экстракционную зону субкритического флюида, ультразвуковая обработка приводит к росту скорости извлечения экстрактивных веществ на начальном, линейном этапе экстракции. При высоком рабочем давлении экстракции (300 бар) эффект ультразвуковой обработки фактически тождественен эффекту температурной интенсификации. Методом сверхкритической флюидной хроматографии показано, что фурокумариновые профили экстрактов пастернака, полученных с температурной и ультразвуковой интенсификацией, идентичны на качественном уровне, и что ультразвуковая обработка даже при давлении 100 бар не приводит к нежелательным сонохимическим эффектам.

Полный текст

Доступ закрыт

Об авторах

И. Н. Ростовщикова

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: pokrovskiy@terraint.ru
Россия, Москва

Р. В. Никонов

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: pokrovskiy@terraint.ru
Россия, Москва

А. В. Камлер

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Email: pokrovskiy@terraint.ru
Россия, Москва

Д. В. Овчинников

Северный (Арктический) Федеральный Университет им. М.В. Ломоносова

Email: pokrovskiy@terraint.ru

Центр коллективного пользования научным оборудованием “Арктика”

Россия, Архангельск

Д. С. Косяков

Северный (Арктический) Федеральный Университет им. М.В. Ломоносова

Email: pokrovskiy@terraint.ru

Центр коллективного пользования научным оборудованием “Арктика”

Россия, Архангельск

О. И. Покровский

Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Автор, ответственный за переписку.
Email: pokrovskiy@terraint.ru
Россия, Москва

Список литературы

  1. Жузе Т.П. Роль сжатых газов как растворителей. М.: Недра, 1981.
  2. McHugh M., Krukonis V. Supercritical fluid extraction. 2nd ed. Boston, MA: Butterworth-Heinemann, 1994.
  3. Martinez J.L. Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, 2007.
  4. Зильфикаров И.Н., Челомбитько В.А., Алиев А.М. Обработка лекарственного растительного сырья сжиженными газами и сверхкритическими флюидами. Пятигорск, 2007.
  5. Perrut M., Perrut V. Towards ingredients by combining Supercritical Fluids with other processes // J. Supercrit. Fluids. 2018. V. 134. P. 214.
  6. Illes V., Daood H.G., Biacs P.A., Gnayfeed M.H., Meszaros B. Supercritical CO2 and subcritical propane extraction of spice red pepper oil with special regard to carotenoid and tocopherol content // J. Chromatogr. Sci. 1999. V. 37. № 9. P. 345.
  7. Li Y., Obadi M., Qi Y., Shi J., Sun J., Chen Zh., Xu B. Extraction of at lipids and phospholipids using subcritical propane and dimethyl ether: experimental data and modeling // Eur. J. Lipid Sci. Technol. 2021. V. 123. № 1. P. 2000092.
  8. Ciulla M., Canale V., Wolicki R.D., Ferrone V., Carlucci G., Fontana A., Siani G., D’Alessandro N., Di Profi P. Comparison of extraction methods for active biomolecules using sub-critical dimethyl ether and n-butane // Eur. Food Res. Technol. 2023. V. 249. № 2. P. 367.
  9. Goto M., Kanda H., Wahyudiono, Machmudah S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether // J. Supercrit. Fluids. 2015. V. 96. P. 245.
  10. Горемыкина Н.В. Обоснование технологии и метода идентификации облепихового масла и товароведная оценка продуктов на его основе: Дисс. … канд. техн. наук. Бийск: Алтайский государственный технический университет им. И.И. Ползунова, 2016.
  11. Belo Y.N., Al-Hamimi S., Chimuka L., Turner Ch. Ultrahigh-pressure supercritical fluid extraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids // Anal. Bioanal. Chem. 2019. V. 411. № 16. P. 3685.
  12. Amador-Luna V.M., Herrero M., Dominguez-Rodriguez G., Ibanez E., Montero L. Enhancing the bioactivity of Dunaliella salina extracts through ultra-high pressure supercritical fluid extraction (UHP-SFE) // Inn. Food Sci. Emerg. Technol. 2024. V. 95. P. 103697.
  13. Chimowitz E.H., Kelley F.D., Munoz F.M. Analysis of retrograde behavior and the cross-over effect in supercritical fluids // Fluid Phase Equil. 1988. V. 44. № 1. P. 23.
  14. Kalikin N.N., Oparin R.D., Kolesnikov A.L., Budkov Yu.A., Kiselev M.G. A crossover of the solid substances solubility in supercritical fluids: what is it in fact? // J. Mol. Liq. 2021. V. 334. P. 115997.
  15. Budkov Yu.A., Kolesnikov A.L., Ivlev D.V., Kalikin N.N., Kiselev M.G. Possibility of pressure crossover prediction by classical DFT for sparingly dissolved compounds in scCO2 // J. Mol. Liq. 2019. V. 276. P. 801.
  16. Chemat F., Abert Vian M., Fabiano-Tixier A.-S., Nutrizio M., Režek Jambrak A., Munekata P.E.S., Lorenzo J.M., Barba F.J., Binello A., Cravotto G. A review of sustainable and intensified techniques for extraction of food and natural products // Green Chem. 2020. V. 22. № 8. P. 2325.
  17. Chemat A., Song M., Li. Y., Fabiano-Tixier A.-S. Shade of innovative food processing techniques: potential inducing factors of lipid oxidation // Molecules. 2023. V. 28. № 24. P. 8138.
  18. Dassoff E.S., Li Y.O. Mechanisms and effects of ultrasound-assisted supercritical CO2 extraction // Trends Food Sci. Technol. 2019. V. 86. P. 492.
  19. Dias A.L.B., de Aguiar A.C., Rostagno M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: current status and trends // Ultrasonics Sonochemistry. 2021. V. 74. P. 105584.
  20. Park I.-B., Son Y., Song I.-S., Na K.-H., Kim J., Khim J. Extraction of metal species from contaminated soils utilizing supercritical CO2 and ultrasound // Jpn. J. Appl. Phys. 2009. V. 48. № 7. P. 07GM17.
  21. Castelo-Grande T., Augusto P.A., Estevez A.M., Barbose D. Application of ultrasound-assisted supercritical extraction to soil remediation // Chem. Eng. Technol. 2017. V. 40. № 4. P. 691.
  22. Kuijpers M.W.A., van Eck D., Kemmere M.F., Keurentjes J.T.F. Cavitation-induced reactions in high-pressure carbon dioxide // Science. 2002. V. 298. № 5600. P. 1969.
  23. Kemmere M., Kuijpers M., Jacobs L., Keurentjes J. Ultrasound-induced polymerization of methyl methacrylate in liquid carbon dioxide: a clean and safe route to produce polymers with controlled molecular weight // Macromol. Symp. 2004. V. 206. № 1. P. 321.
  24. Castillo-Zamudio R.I., Paniagua-Martinez I., Ortuno-Cases C., Garcia-Alvarado M.A., Larrea V., Benedito J. Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham // Inn. Food Sci. Emerg. Technol. 2021. V. 67. P. 102557.
  25. Abramova A., Abramov V., Bayazitov V., Nikonov R., Fedulov I., Stevanato L., Cravotto G. Ultrasound-assisted cold pasteurization in liquid or SC-CO2 // Processes. 2021. V. 9. № 8. P. 1457.
  26. Paniagua-Martínez I., Mulet. A., Garcia-Alvarado M.A., Benedito J. Ultrasound-assisted supercritical CO2 treatment in continuous regime: Application in Saccharomyces cerevisiae inactivation // J. Food Eng. 2016. V. 181. P. 42.
  27. Голубкина Н.А., Сокуренко М.А., Степанов В.А., Заячковский В.А., Кошелева О.В., Молчанова А.В., Бекетова Л.В., Ковальский Ю.Г., Солдатенко А.В. Функциональный продукт питания на основе переработки пастернака с высоким содержанием моносахаров и антиоксидантов. Патент РФ 2734122 от 13.11.2018.
  28. Kenari H.M., Kordafshari Gh., Moghimi M., Eghbalian F., Taherkhani D. Review of pharmacological properties and chemical constituents of Pastinaca sativa // J. Pharmacopunct. 2021. Vol. 24. № 1. P. 14.
  29. Голубкина Н.А., Федорова М.И., Киселева Т.В., Викторова Е.В. Жирнокислотный состав масла семян пастернака Pastinaca sativa L. // Масложир. пром. 2009. № 5. С. 39.
  30. Zangerl A.R., Green E.S., Lampman R.L., Berenbaum M.R. Phenological changes in primary and secondary chemistry of reproductive parts in wild parsnip // Phytochem. 1997. V. 44. № 5. P. 825.
  31. Berenbaum M.R. Patterns of furanocoumarin production and insect herbivory in a population of wild parsnip (Pastinaca sativa L.) // Oecologia. 1981. V. 49. № 2. P. 236.
  32. Ekiert H., Gomółka E. Furanocoumarins in Pastinaca sativa L. in vitro culture // Pharmazie. 2000. V. 55. № 8. P. 618.
  33. Kviesis J., Klimenkovs I., Arbidans L., Podjaca A., Klavins M., Liepins E. Evaluation of furanocoumarins from seeds of the wild parsnip (Pastinaca sativa L. s.l.) // J. Chromatogr. B. 2019. V. 1105. P. 54.
  34. Waksmundzka-Hajnos M., Petruczynik A., Dragan A., Wianowska D., Dawidowicz A.L., Sowa I. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits // J. Chromatogr. B. 2004. V. 800. № 1. P. 181.
  35. Потапенко А.Я. Псоралены и медицина – 4000-летний опыт фотохимиотерапии // Сорос. образ. журн. 2000. V. 6. № 11. P. 22.
  36. Pathak M.A., Fitzpatrick T.B. The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD // J. Photochem. Photobiol. B: Biol. 1992. V. 14. № 1. P. 3.
  37. Sovová H., Sajfrtová M., Stateva R.P. A novel model for multicomponent supercritical fluid extraction and its application to Ruta graveolens // J. Supercrit. Fluids. 2017. V. 120. P. 102.
  38. Scopel J.M., Medeiros-Neves B., H. Ferrera Teixiera, Brazil N.T., Bordignon S.A.L., Mendonca Diz F., Bueno Morrone F., Almeida R.N., Cassel E., von Poser G.L., Vargas R.M.F. Supercritical carbon dioxide extraction of coumarins from the aerial parts of Pterocaulon polystachyum // Molecules. 2024. V. 29. № 12. P. 2741.
  39. Woźniak Ł., Połaska M., Marszałek, Skapska S. Photosensitizing furocoumarins: content in plant matrices and kinetics of supercritical carbon dioxide extraction // Molecules. 2020. V. 25. № 17. P. 3805.
  40. Pokrovskiy O.I., Markoliya A.A., Lepeshkin F.D., Kuvykin I.V., O.O. Parenago, Gonchukov S.A. Extraction of linear furocoumarins from Ammi majus seeds by means of supercritical fluid extraction and supercritical fluid chromatography // Russ. J. Phys. Chem. B. 2009. V. 3. № 8. P. 1165. [Покровский О.И., Марколия А.А., Лепешкин Ф.Д., Кувыкин И.В., Паренаго О.О., Гончуков С.А. Выделение линейных фурокумаринов из семян Ammi Majus с помощью сверхкритической флюидной экстракции и сверхкритической флюидной хроматографии // Сверхкритические флюиды: теория и практика. 2009. Т. 4. № 4. С. 61.]
  41. Gupta R.B., Shim J.-J. Solubility in supercritical carbon dioxide. Boca Raton: CRC Press, 2007. 909 p.
  42. Технология и стандартизация лекарств / Под ред. Георгиевского В.П., Конева Ф.А. Т. 1. Харьков: ООО “Рирег”, 1996.
  43. Касьянов Г.И., Таран А.А., Пехов А.В. Натуральные пищевые ароматизаторы – CO2-экстракты. М.: Пищевая промышленность, 1978.
  44. Pokrovskiy O., Rostovschikova I., Ustinovich K., Voronov I., Kosyakov D. Chromatography-like propagation of water along raw material bed in supercritical fluid extraction // J. Chromatogr. A. 2024. V. 1713. P. 464502.
  45. Prokopchuk D., Pokrovskiy O. On the enhanced accuracy of kinetic curve building in supercritical fluid extraction from aroma plants using a new 3D-printed extract collection device // Molecules. 2020. V. 25. № 9. P. 2008.
  46. Hatami T., Cesar Flores Johner J., Kurdian A.R., Meireles M.A.A. A step-by-step finite element method for solving the external mass transfer control model of the supercritical fluid extraction process: A case study of extraction from fennel // J. Supercrit. Fluids. 2020. V. 160. P. 104797.
  47. Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. Thermophysical properties of fluid systems // Eds. P.J. Lindstrom, W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database. Gaithersburg MD: NIST. P. 20899.
  48. Desmortreux C., Rothaupt M., West C., Lesellier E. Improved separation of furocoumarins of essential oils by supercritical fluid chromatography // J. Chromatogr. A. 2009. V. 1216. № 42. P. 7088.
  49. Pfeifer I., Murauer A., Ganzera M. Determination of coumarins in the roots of Angelica dahurica by supercritical fluid chromatography // J. Pharm. Biomed. Analysis. 2016. V. 129. P. 246.
  50. Pokrovskii O.I., Krutikova A.A., Ustinovich K.B., Parenago O.O., Moshnin M.V., Gonchukov S.A., Lunin V.V. Preparative separation of methoxy derivatives of psoralen using supercritical-fluid chromatography // Russ. J. Phys. Chem. B. 2013. V. 7, № 8. P. 901–915. [Покровский О.И., Крутикова А.А., Устинович К.Б., Паренаго О.О., Мошнин М.В., Гончуков С.А., Лунин В.В. Препаративное разделение метоксипроизводных псоралена с помощью сверхкритической флюидной хроматографии // Сверхкритические флюиды: теория и практика. 2013. Т. 8. № 1. С. 14.]
  51. Testa Camillo M.R., Russo M., Trozzi A., Mondello L., Dugo P. Quantification of coumarins, furocoumarins and polymethoxyflavones in hydroalcoholic fragrances by supercritical fluid chromatography-tandem mass spectrometry // J. Ess. Oil Res. 2023. V. 35. № 5. P. 461.
  52. Pokrovskiy O.I., Rostovschikova I.N., Ustinovich K.B. Effect of supercritical carbon dioxide compression heating in both stationary and flow regimes // Theor. Found. Chem. Eng. 2024. V. 58. P. 450. [Покровский О.И., Ростовщикова И.Н., Устинович К.Б. Эффект компрессионного
 разогрева сверхкритического диоксида углерода в стационарном и проточном режимах // Хим. технология. 2023. Т. 24. № 12. С. 470.]
  53. Carvalho P.I.N., Osorio-Tobon J.F., Zabot G.L., Meireles M.A.A. Spatial and temporal temperature distributions in fixed beds undergoing supercritical fluid extraction // Inn. Food Sci. Emerg. Technol. 2018. V. 47. P. 504.
  54. Sovová H., Nobre B.P., Palavra A. Modeling of the kinetics of supercritical fluid extraction of lipids from microalgae with emphasis on extract desorption // Materials. 2016. V. 9. № 6. P. 423.
  55. Prausnitz J.M., Lichtenthaler R.N., de Azevedo E.G. Molecular thermodynamics of fluid-phase equilibria. 3rd ed. Upper Saddle River, N.J: Prentice Hall PTR, 1999.
  56. Chrastil J. Solubility of solids and liquids in supercritical gases // J. Phys. Chem. 1982. V. 86. № 15. P. 3016.
  57. Chen C.-C., Chang C.J., Yang P. Vapor-liquid equilibria of carbon dioxide with linoleic acid, α-tocopherol and triolein at elevated pressures // Fluid Phase Equil. 2000. V. 175, № 1–2. P. 107.
  58. Nilsson W.B., Gauglitz E.J., Hudson J.K. Solubilities of methyl oleate, oleic acid, oleyl glycerols, and oleyl glycerol mixtures in supercritical carbon dioxide // J. Am. Oil Chem. Soc. 1991. V. 68. № 2. P. 87.
  59. Weber W., Petkov S., Brunner G. Vapour-liquid-equilibria and calculations using the Redlich–Kwong-Aspen-equation of state for tristearin, tripalmitin, and triolein in CO2 and propane // Fluid Phase Equil. 1999. V. 158–160. P. 695.
  60. Ilieva P., Kilzer A., Weidner E. Measurement of solubility, viscosity, density and interfacial tension of the systems tristearin and CO2 and rapeseed oil and CO2 // J. Supercrit. Fluids. 2016. V. 117. P. 40.
  61. Pokrovskiy O., Rostovschikova I., Usovich O., Ustinovich K. Fluid revisited: An overlook of a method for solubility measurements in supercritical fluids based on chromatography retention // J. Mol. Liq. 2024. V. 400. P. 124466.
  62. Pokrovskiy O., Rostovschikova I. On the discrepancy between crossovers of solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography // J. Chromatogr. A. 2024. V. 1732. P. 465210.
  63. Kitamura N., Kohtani S., Nakagaki R. Molecular aspects of furocoumarin reactions: Photophysics, photochemistry, photobiology, and structural analysis // J. Photochem. Photobiol. C: Photochem. Rev. 2005. V. 6. № 2. P. 168.
  64. Berenbaum M.R., Zangerl A.R., Nitao J.K. Furanocoumarins in seeds of wild and cultivated parsnip // Phytochem. 1984. V. 23. № 8. P. 1809.
  65. Span R., Wagner W. A New equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa // J. Phys. Chem. Ref. Data. 2009. V. 25. № 6. P. 1509.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость выхода экстракции (η, %) от гидромодуля (S/F) при давлении 100 бар: 1 – T = комн; 2 – T = 50ºС; 3 – W(УЗ) ≈ 70 Вт; 4 – T = 100ºС. Сплошная линия – без УЗ-воздействия, пунктирная линия – с использованием УЗ.

Скачать (112KB)
3. Рис. 2. Зависимость выхода экстракции (η, %) от гидромодуля (S/F) при давлении 300 бар: 1 – T = 50ºС; 2 – T = комн; 3 – W(УЗ) ≈ 50 Вт; 4 – W(УЗ) ≈ 80 Вт; 5 – T = 100ºС. Сплошная линия – без УЗ-воздействия, пунктирная линия – с использованием УЗ.

Скачать (120KB)
4. Рис. 3. Зависимость плотности СО2 (ρ, г/мл) от температуры (T, ºC) при разных значениях давления: 1 – 300 бар; 2 – 100 бар. Данные NIST [47], рассчитанные по уравнению состояния Спана-Вагнера [65].

Скачать (94KB)
5. Рис. 4. СКФ-хроматограмма фракции СО2-экстракта пастернака. (а) – экстракция с температурной интенсификацией при температуре 100ºС, (б) –экстракция с ультразвуковой интенсификацией при средней мощности 70 Вт. 1 – императорин, 2 – ксантотоксин, 3 – изопимпинеллин, 4 – бергаптен.

Скачать (165KB)

© Российская академия наук, 2025