Single-channel magnonic demultiplexer based on a transversely confined coupled waveguide and a Mach–Zehnder interferometer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The propagation of spin waves in a system composed of a Mach–Zehnder interferometer (MZI) and a transversally confined waveguide based on yttrium iron garnet has been investigated. Micromagnetic simulations demonstrate the possibility of using the system as a single-channel demultiplexer for spin-wave signals. It is shown that the distance between the MZI and the transversally confined waveguide, as well as variations in the waveguide width, affect both the phase shift of the propagating signal and the coupling efficiency in the interaction region. The demultiplexing characteristics of the structure are presented, revealing its potential for spatial–frequency signal selection. The proposed coupled waveguide–MZI system provides a basis for the implementation of logic operations and may be employed in integrated circuits based on magnonic principles.

Texto integral

Acesso é fechado

Sobre autores

V. Moshkov

Saratov National Research State University named after N.G. Chernyshevsky

Autor responsável pela correspondência
Email: moshkovva2003@gmail.com
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

A. Martyshkin

Saratov National Research State University named after N.G. Chernyshevsky

Email: moshkovva2003@gmail.com
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

A. Sadovnikov

Saratov National Research State University named after N.G. Chernyshevsky

Email: moshkovva2003@gmail.com
Rússia, Astrakhanskaya Str., 83, Saratov, 410012

Bibliografia

  1. Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  2. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. № 17. P. 170901.
  3. Thiery N., Naletov V.V., Vila L. et al. // Phys. Rev. B. 2018. V. 97. № 6. P. 064422.
  4. Hикитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  5. Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. P. 264001.
  6. Xивинцев Ю.В., Сахаров В.К., Высоцкий С.Л. и др. // ЖТФ. 2018. Т. 88. № 7. С. 1060.
  7. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
  8. Cherepanov V., Kolokolov I., L’vov V. // Phys. Reports. 1993. V. 229. № 3. P. 81.
  9. Glass H.L. // Proc. IEEE. 1988. V. 76. № 2. P. 151.
  10. Serrao C.R., Sahu J.R., Ramesha K., Rao C.N.R. // J. Appl. Phys. 2008. V. 104. № 1. P. 016102.
  11. Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
  12. Stancil D.D., Prabhakar A. Spin Waves. N. Y.: Springer, 2009.
  13. Arsad A.Z., Zuhdi A.W.M., Ibrahim N.B., Hannan M.A. // Appl. Sciences. 2023. V. 13. № 2. P. 1218.
  14. Khitun A., Krivorotov I. Spintronics Handbook. Second Edition: Spin Transport and Magnetism / Eds. by E. Y. Tsymbal, I. Žutić. Boca Raton: CRC Press, 2019. V. 3. P. 571.
  15. Csaba G., Papp Á., Porod W. // Phys. Lett. A. 2017. V. 381. № 17. P. 1471.
  16. Schneider T., Serga A.A., Leven B. et al. // Appl. Phys. Lett. 2008. V. 92. № 2.
  17. Cеменов А.С., Смирнов В.Л., Шмалько А.В. Интегральная оптика для систем передачи и обработки информации. М.: Связь, 1990.
  18. Shastri B.J., Tait A.N., Ferreira de Lima T. et al. // Nature Photonics. 2021. V. 15. № 2. P. 102.
  19. Vogt K., Fradin F.Y., Pearson J.E. et al. // Nature Commun. 2014. V. 5. № 1. P. 3727.
  20. Martyshkin A.A., Davies C.S., Sadovnikov A.V. // Phys. Rev. Appl. 2022. V. 18. № 6. P. 064093.
  21. Davies C.S., Sadovnikov A.V., Grishin S.V. et al. // IEEE Trans. 2015. V. MAG- 51. № 11. Article No. 3401904.
  22. Brächer T., Pirro P., Westermann J. et al. // Appl. Phys. Lett. 2013. V. 102. № 13. P. 132411.
  23. Demidov V.E., Rekers P., Mahrov B., Demokritov S.O. // Appl. Phys. Lett. 2006. V. 89. № 21. P. 212501.
  24. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  25. Demokritov S.O., Serga A.A., André A. et al. // Phys. Rev. Lett. 2004. V. 93. № 4. P. 047201.
  26. Grachev A.A., Sadovnikov A.V., Nikitov S.A. // Nanomaterials. 2022. V. 12. № 9. P. 1520.
  27. Dunaev S.N., Fetisov Y.K. // IEEE Trans. 1995. V. MAG-31. № 6. P. 3488.
  28. Fetisov Y.K., Srinivasan G. // Appl. Phys. Lett. 2006. V. 88. № 14. P. 143503.
  29. Martyshkin A.A., Sadovnikov A.V. // J. Magn. Magn. Mater. 2024. V. 595. Article No. 171644.
  30. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматгиз, 1994.
  31. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  32. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  33. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of the system of coupled Mach-Zehnder interferometer and transversely limited waveguide (a) and the distribution of the internal magnetic field Heff(x, y) (b) and Heff(ξ) (c).

Baixar (189KB)
3. Fig. 2. Spatial maps of the intensity distribution mz(x, y) – the component of the dynamic magnetization of the PMSSW, normalized to the saturation magnetization modulus M0, at frequencies: f1 = 5.225 GHz (a), f2 = 5.3 GHz (b), f3 = 5.325 GHz (c) and f4 = 5.375 GHz (d).

Baixar (217KB)
4. Fig. 3. Power of the spin-wave signal at ports P2, P3, P4 (a) and a fragment of the logical truth table (I – true, F – false) (b).

Baixar (141KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025