Phonon transport features in dielectrics with nanostructured inhomogeneities

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The peculiarities of heat capacity and phonon spectrum in single crystals of yttrium-rare earth aluminum garnets solid solutions Y3xRexAl5O12 (Re-Ho;Er) prone to clustering are analyzed. It was shown that nanoscale inhomogeneities in single crystals of solid solutions can be responsible for the formation of additional local modes in heat capacity in the low-temperature region.

Texto integral

Acesso é fechado

Sobre autores

S. Nikitov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: taranov@cplire.ru
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

A. Taranov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Autor responsável pela correspondência
Email: taranov@cplire.ru
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

E. Khazanov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: taranov@cplire.ru
Rússia, Mokhovaya Str., 11, build. 7, Moscow, 125009

E. Charnaya

St. Petersburg State University

Email: taranov@cplire.ru

Physics Department 

Rússia, Ylyanovskaya Str., 3, Peterhof, St. Petersburg, 198504

E. Shevchenko

St. Petersburg State University

Email: taranov@cplire.ru

Physics Department 

Rússia, Ylyanovskaya Str., 3, Peterhof, St. Petersburg, 198504

Bibliografia

  1. Kаминский А.А., Таранов А.В., Хазанов Е.Н., Акчурин М.Ш. // Квантов. электрон. 2012. Т. 42. № 10. С. 880.
  2. Suga H. // J. Phys. Cond. Mat. 2003. V. 15. № 11. P. S775.
  3. Zeller R.C., Pohl R.O. // Phys. Rev. B. 1971. V. 4. № 6. P. 2029.
  4. Graebner J.E., Golding B., Allen L.C. // Phys. Rev. B. 1986. V. 34. № 8. P. 5696.
  5. Graebner J.E., Golding B. // Phys. Rev. B. 1986. V. 34. № 8. P. 5788.
  6. Клингер М.И. // Успехи физ. наук. 1987. Т. 152. № 4. С. 623.
  7. Cahill D.G., Pohl R.O. // Solid State Communications 1989. V. 70. № 10. P. 927.
  8. Mалиновский В.К., Новиков В.Н., Соколов А.П. // Успехи физ. наук. 1993. Т. 163. № 5. С. 119.
  9. Гусев А.И., Ремпель А.А. Нанокристаллические материалы. М.: Физматлит, 2000
  10. Никитов С.А., Таранов А.В., Хазанов Е.Н. // Акуст. журн. 2023. Т. 69. № 1. С. 41.
  11. Лезова И.E., Саламатов Е.И., Таранов A.В. и др. // ЖЭТФ. 2019. Т. 156. № 5. С. 918.
  12. Саламатов Е.И., Таранов А.В., Хазанов Е.Н. и др. // ЖЭТФ. 2017. Т. 152. № 5(11). С. 910.
  13. Лезова И.E., Карбань О.В., Таранов A.В. и др. // ЖЭТФ. 2020. Т. 157. № 1. С. 90.
  14. Huang B., Bai H.Y., Wang W.H. // J. Appl. Phys. 2014. V. 115. № 15. P. 153505. https://doi.org/10.1063/1.4871676
  15. Shevchenko E.V., Charnaya E.V., Khazanov E.N. et al. // J. Alloys and Compounds. 2017. V. 717. P. 183.
  16. Никитов С.А., Таранов А.В., Хазанов Е.Н. и др. // Акуст. журн. 2024. Т. 70. № 2. С. 180.
  17. Efitsenko P.Y., Khazanov E.N., Ivanov S.N. et al. // Phys. Lett. A. 1990. V. 147. № 2, 3. P. 135.
  18. Григорьева Н.А., Иванов С.Н., Касперович В.С. и др. // ФТТ. 1995. Т. 37. № 11. С. 3360.
  19. Воротилова Л.С., Иванов С.Н., Касперович В.С. и др. // ФТТ. 1992. Т. 34. № 9. С. 2911.
  20. Карбань О.В., Иванов С.Н., Саламатов Е.И., Быстров С.Г. // Неорган. матер. 2001. Т. 37. № 7. С. 841.
  21. Ivanov S.N., Khazanov E.N., Paszkiewicz T. et al. // Z. Phys. B. 1996. V. 99. № 4. P. 535.
  22. Воробьев А.А., Григорьева Н.А., Иванов С.Н. и др. // ФТТ. 1998. Т. 40. № 6. С. 1047.
  23. Mорозов С.И., Данилкин С.А., Закуркин В.В. и др. // ФТТ. 1983. Т. 25. № 4. С. 1135.
  24. Каган Ю.М., Иосилевский Я.А. // ЖЭТФ. 1962. Т. 42. № 1. С. 259.
  25. Иванов С.Н., Медведь В.В., Котелянский И.М., Хазанов Е.Н. // ФТТ. 1986. Т. 28. № 10. С. 2941.
  26. Катаева В.Ф., Соболева Н.Н., Чистый И.Л. и др. // ФТТ. 1980. Т. 22. № 5. С. 1379.
  27. Tari A. The specific heat of matter at low temperatures. L.: Imperial College Press, 2003.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of the heat capacity of single crystals and glass of pentaphosphates and quartz in the region of high (a) and low (b) temperatures: single crystal NdP5O14 (+); YbP5O14 (o); glass NdP5O14 (x) [11]; single crystal SiO2 (Δ); glass SiO2 (Ñ) [3]. Debye heat capacity (dash-dotted line), local modes (dotted line); approximation (solid line).

Baixar (112KB)
3. Fig. 2. Dependence C(T) in Y2HoAl5O12 taking into account the superposition of vibrational states of Ho and Y (a) and the values of C(T) for the Y2LuAl5O12 sample (b): Y2HoAl5O12 (solid line); Y2HoAl5O12 (curve 5). Contribution to the heat capacity of the Schottky anomalies (curve 1), the Debye phonon heat capacity (curve 2), local modes θ Ho and Y (curve 3) and the local mode due to clustering (curve 4). Dashed lines are the sum of all contributions.

Baixar (110KB)
4. Fig. 3. Dependences C(T) in solid solutions Y3–xErxAl5O12 at x = 0.6 (a) and x = 1 (b)); contribution to the heat capacity of the Schottky anomalies due to the splitting of the lower Kramers doublet Δ (0.6 and 1.3 K, respectively) and the lower excited Stark level of 34 K (curve 1), the Debye phonon heat capacity (curve 2), the superposition of local modes θ Er and Y (curve 3) and the additional mode of 72 and 50 K, respectively (curve 4); dashed lines are the sum of all contributions.

Baixar (105KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025