Fusarium species affecting potato tubers and tomato fruits in Uganda

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Irish potato and tomato are among the most widely cultivated crops in Uganda. In 2020, samples of affected potato tubers and tomato fruits were collected from farms across four regions in Uganda for analysis. A total of 22 strains of Fusarium spp. were isolated from potato tubers and seven strains were isolated from tomato fruits. Identification of the fungal species was accomplished using cultural and morphological characteristics, as well as DNA sequencing targeting specific regions: ITS1–5.8S–ITS2, parts of the elongation factor 1 (tef 1) gene, and beta-tubulin (β-tub) gene. The analysis of the isolated strains from potato tubers revealed the presence of Fusarium incarnatum-equisety species complex, F. sambucinum species complex, F. oxysporum species complex, F. solani species complex. Additionally, F. incarnatum-equiseti species complex was detected in tomato fruits. All the investigated strains exhibited the ability to successfully infect both injured tomato fruits and potato tubers. Tested strains were susceptible to difenoconazole (ЕС50 = 0.08–8.5 mg/L) and thiabendazole (EC50 = 0.67–5.1 mg/L).

Texto integral

Acesso é fechado

Sobre autores

A. Elansky

Peoples Friendship University of Russia named after Patrice Lumumba

Autor responsável pela correspondência
Email: sasha.elansky@gmail.com
Rússia, 117198 Moscow

S. Mislavskiy

Peoples Friendship University of Russia named after Patrice Lumumba

Email: mislavskiy.sm@yandex.ru
Rússia, 117198 Moscow

E. Chudinova

Peoples Friendship University of Russia named after Patrice Lumumba

Email: chudiel@mail.ru
Rússia, 117198 Moscow

L. Kokaeva

Peoples Friendship University of Russia named after Patrice Lumumba; M.V. Lomonosov Moscow State University

Email: kokaeval@gmail.com
Rússia, 117198 Moscow; 119991 Moscow

S. Elansky

Peoples Friendship University of Russia named after Patrice Lumumba; M.V. Lomonosov Moscow State University

Email: elanskiy_sn@pfur.ru
Rússia, 117198 Moscow; 119991 Moscow

E. Denisova

M.V. Lomonosov Moscow State University

Email: denisova.elizavet@gmail.com
Rússia, 119991 Moscow

I. Ilichev

M.V. Lomonosov Moscow State University

Email: igor.ilichev.msu@gmail.com
Rússia, 119991 Moscow

A. Belosokhov

M.V. Lomonosov Moscow State University

Email: arsenybelosokhov.msu.bios@gmail.com
Rússia, 119991 Moscow

Yu. Bamutaze

Makerere University

Email: yazidhibamutaze@gmail.com

Department of Geography, Geo-Informatics and Climatic Sciences

Uganda, 7062 Kampala

P. Musinguzi

Makerere University

Email: patrick.musinguzi@mak.ac.ug

Department of Agricultural Production, School of Agricultural Sciences

Uganda, 7062 Kampala

E. Opolot

Makerere University

Email: oplote@yahoo.com

Department of Agricultural Production, School of Agricultural Sciences

Uganda, 7062 Kampala

P. Krasilnikov

M.V. Lomonosov Moscow State University

Email: pavel.krasilnikov@gmail.com
Rússia, 119991 Moscow

Bibliografia

  1. Abdurahman A., Parker M.L., Kreuze J. et al. Molecular epidemiology of Ralstonia solanacearum species complex strains causing bacterial wilt of potato in Uganda. Phytopathology. 2019. V. 109. P. 1922—1931. https://doi.org/10.1094/PHYTO-12-18-0476-R
  2. Akbar A., Hussain S., Ullah K. et al. Detection, virulence, and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PLOS One. 2018. V. 13 (9). P. e0203613. https://doi.org/10.1371/journal.pone.0203613
  3. Azil N., Stefańczyk E., Sobkowiak S. et al. Identification and pathogenicity of Fusarium spp. associated with tuber dry rot and wilt of potato in Algeria. Eur. J. Plant Pathol. 2021. V. 159. P. 495—509. https://doi.org/10.1007/s10658-020-02177-5
  4. Borisade O.A., Uwaidem Y.I., Salami A.E. Preliminary report on Fusarium oxysporum f. sp. Lycopersici (sensu lato) from some tomato producing agroecological areas in Southwestern Nigeria and susceptibility of F1-resistant tomato hybrid (F1-Lindo) to infection. Ann. Res. Rev. Biol. 2017. V. 18 (2). P. 1—9. https://doi.org/10.9734/ARRB/2017/34626
  5. Byarugaba A.A., Mukasa S.B., Barekye A. et al. Interactive effects of Potato virus Y and Potato leafroll virus infection on potato yields in Uganda. Open Agriculture. 2020. V. 5. P. 726—739. https://doi.org/10.1515/opag-2020—0073
  6. Chudinova E.M., Shkunkova T.A., Elansky S.N. Fungal pathogens of tomato in South-Western Russia (Krasnodar territory). Plant Protection News. 2020. V. 103 (3). P. 210—212. http://dx.doi.org/10.31993/2308-6459-2020-103-3-4998
  7. Crous P.W., Lombard L., Sandoval-Denis M. et al. Fusarium: More than a node or a foot-shaped basal cell. Stud. Mycol. 2021. V. 98. P. 100116. https://doi.org/10.1016/j.simyco.2021.100116
  8. Desjardins A.E., Christ-Harned E.A., McCormick S.P. et al. Population structure and genetic analysis of field resistance to thiabendazole in Gibberella pulicaris from potato tubers. Phytopathology. 1993. V. 83 (2). P. 164—170.
  9. Du M., Ren X., Sun Q. et al. Characterization of Fusarium spp. causing potato dry rot in China and susceptibility evaluation of Chinese potato germplasm to the pathogen. Potato Res. 2012. V. 55. P. 175—184. http://dx.doi.org/10.1007/s11540-012-9217-6
  10. Gachango E.; Hanson L.E.; Rojas A. et al. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides. Plant Disease. 2012. V. 96. P. 1767—1774. https://doi.org/10.1094/pdis-11-11-0932-re
  11. Hanson L.E., Schwager S.J., Loria R. Sensitivity to thiabendazole in Fusarium species associated with dry rot of potato. Phytopathology. 1996. V. 86. P. 378—384.
  12. Harahagazwe, D., Condori B., Barreda C. et al. How big is the potato (Solanum tuberosum L.) yield gap in Sub-Saharan Africa and why? A participatory approach. Open Agriculture. 2018. V. 3. P. 180—189. https://doi.org/10.1515/opag-2018-0019
  13. Hellin P., King R., Urban M. et al. The adaptation of Fusarium culmorum to DMI fungicides is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Front. Microbiol. 2018. V. 9. Art. 1385. https://doi.org/10.3389/fmicb.2018.01385
  14. Ivanova A.E., Denisova E., Musinguzi P. et al. Biological indicators of soil condition on the Kabanyolo experimental field, Uganda. Agriculture. 2021. V. 11. P. 1228. http://dx.doi.org/10.3390/agriculture11121228
  15. Kim J.C., Lee Y.W. Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers. Appl. and Env. Microbiol. 1994. V. 60. P. 4380—4386.
  16. Langerfeld E. Resistance to thiabendazol of Fusarium coeruleum. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes. 1990. V. 42 (5). P. 79.
  17. Namugga P., Sibiya J., Melis R. et al. Yield response of Potato (Solanum tuberosum L.) genotypes to late blight caused by Phytophthora infestans in Uganda. Am.J. Pot. Res. 2018. V. 95. P. 423—434. https://doi.org/10.1007/s12230-018-9642-4
  18. Njoroge A.W., Andersson B., Yuen J.E. et al. Greater aggressiveness in the 2_A1 lineage of Phytophthora infestans may partially explain its rapid displacement of the US-1 lineage in east Africa. Plant Pathol. 2019. V. 68. P. 566—575. https://doi.org/10.1111/ppa.12977
  19. Njoroge A.W., Tusiime G., Forbes G.A., et al. Displacement of US-1 clonal lineage by a new lineage of Phytophthora infestans on potato in Kenya and Uganda. Plant Pathol. 2016. V. 65. P. 587—592.https://doi.org/10.1111/ppa.12451
  20. O’Donnell K., Kistler H.C., Cigelnik E. et al. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 2044—2049.
  21. O’Donnell K., Ward T.J., Robert V.A.R.G. et al. DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica. 2015. V. 43. P. 583—595. https://doi.org/10.1007/s12600-015-0484-z
  22. O’Donnell K., Whitaker B.K., Laraba I. et al. DNA Sequence-Based Identification of Fusarium: A Work in Progress. Plant Dis. 2022. V. 106 (6). P. 1597—1609. https://doi.org/10.1094/PDIS-09-21-2035-SR
  23. Peters J.C., Lees A.K., Cullen D.W. et al. Characterization of Fusarium spp. responsible for causing dry rot of potato in Great Britain. Plant Pathol. 2008. V. 57. 262—271. https://doi.org/10.1111/j.1365-3059.2007.01777.x
  24. Peters R.D., Macdonald I.K., MacIsaac K.A. et al. First report of thiabendazole-resistant isolates of Fusarium sambucinum infecting stored potato in Nova Scotia, Canada. Plant Disease. 2001. V. 85 (9). 1030. https://doi.org/10.1094/PDIS.2001.85.9.1030A
  25. Potato Roadmap Uganda 2021. Ministry of foreign affairs. Haag, 2021.
  26. Rekanović E., Mihajlović M., Potočnik I. In vitro sensitivity of Fusarium graminearum (Schwabe) to difenoconazole, prothioconazole and thiophanate-methyl. Pestic. Phytomed. (Belgrade). 2010. V. 25 (4). P. 325—333. http://dx.doi.org/10.2298/PIF1004325R
  27. Srinivas C., Nirmala Devi D., Narasimha Murthy K. et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity. A review. Saudi J. Biol. Sci. 2019. V. 26 (7). P. 1315—1324. https://doi.org/10.1016/j.sjbs.2019.06.002
  28. Stefańczyk E., Sobkowiak S., Brylińska M. et al. Diversity of Fusarium spp. associated with dry rot of potato tubers in Poland. Eur. J. Plant Pathol. 2016. V. 145. P. 871—884. https://doi.org/10.1007/s10658-016-0875-0
  29. Tumwine J., Frinking H.D., Jeger M.J. Tomato late blight (Phytophthora infestans) in Uganda. Int. J. of Pest Management. 2002. V. 48 (1). P. 59—64. https://doi.org/10.1080/09670870110094350
  30. Watanabe M., Yonezawa T., Lee K. et al. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC evolutionary biology. 2011. V. 11. P. 322. https://doi.org/10.1186/1471-2148-11-322
  31. White T.J., Bruns T., Lee S.J.W.T. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (eds). PCR-protocols and applications — a laboratory manual. Academic Press, San Diego, 1990, pp. 315—322.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Samples of infected potato tubers and tomato fruits were collected samples were collected in the southwest (1, 2), center (3) and east (4) of Uganda.

Baixar (240KB)
3. Fig. 2. Phylogenetic tree inferred from maximum-likelihood analysis of the concatenated alignment, including partial tef gene region (675 bp). The confidence values are indicated at the branches (1000 bootstrap replicates). PT, PL, PS — isolates from potato tubers, leaves, stems correspondingly, TF — from tomato fruits, SC — species complex.

Baixar (565KB)
4. Fig. 3. Phylogenetic tree inferred from maximum-likelihood analysis of the concatenated alignment, including partial tef and tub gene regions (1230 bp). The confidence values are indicated at the branches (500 bootstrap replicates). PT, PL, PS — isolates from potato tubers, leaves, stems correspondingly, TF — from tomato fruits.

Baixar (360KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024