Polycrystalline methylammonium-lead bromide perovskite films for photonic metasurfaces
- 作者: Yurasik G.A.1, Kasyanova I.V.1, Artemov V.V.1, Ezhov A.A.1,2, Pavlov I.S.1, Antonov A.A.1, Long G.3, Gorkunov M.V.1,4
-
隶属关系:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- M.V. Lomonosov Moscow State University, Faculty of Physics
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University
- National Research Nuclear University “MEPhI”
- 期: 卷 69, 编号 3 (2024)
- 页面: 461-469
- 栏目: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://rjraap.com/0023-4761/article/view/673184
- DOI: https://doi.org/10.31857/S0023476124030119
- EDN: https://elibrary.ru/XOIZFD
- ID: 673184
如何引用文章
详细
Polycrystalline films of organo-inorganic perovskite semiconductors are promising as a foundation for creating functional optical metasurfaces. The requirements for film structural perfection, thickness uniformity, and defect-free characteristics are much more stringent compared to perovskite films for photovoltaics. This work presents the results of searching for optimal conditions for one-step synthesis of lead methylammonium bromide films using centrifugation, and describes the successful fabrication of subwavelength optical gratings from these films through focused ion beam processing. The measured spectra of light transmission through the gratings demonstrated their excellent optical quality and confirmed the possibility of creating semiconductor photon metasurfaces with submicrometer periodicity and high-Q dielectric resonances.
全文:

作者简介
G. Yurasik
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
编辑信件的主要联系方式.
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow
I. Kasyanova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow
V. Artemov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow
A. Ezhov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”;M.V. Lomonosov Moscow State University, Faculty of Physics
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow; Moscow
I. Pavlov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow
A. Antonov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow
Guankui Long
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University
Email: yurasik.georgy@yandex.ru
台湾, Tianjin
M. Gorkunov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow; Moscow
参考
- Kim J.Y., Lee J.-W., Jung H.S.et al. // Chem. Rev. 2020. V. 120. № 15. P. 7867. https://doi.org/10.1021/acs.chemrev.0c00107
- Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. № 6364. P. 745. https://doi.org/10.1126/science.aam7093
- Berestennikov A.S., Voroshilov P.M., Makarov S.V., Kivshar Y.S. // Appl. Phys. Rev. 2019. V. 6. № 3. P. 031307. https://doi.org/10.1063/1.5107449
- Xiao M., Huang F., Huang W. et al. // Ang. Chem. Int. Ed. 2014. V. 53. № 37. P. 9898. https://doi.org/10.1002/anie.201405334
- Swain B.S., Lee J. // Physica E. 2021. V. 126. P. 114420. https://doi.org/10.1016/j.physe.2020.114420
- Long G., Adamo G., Tian J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1551. https://doi.org/10.1038/s41467-022-29253-0
- Saidaminov M.I., Abdelhady A.L., Murali B. et al. // Nat. Commun. 2015. V. 6. № 1. P. 7586. https://doi.org/10.1038/ncomms8586
- Gorkunov M.V., Mamonova A.V., Kasyanova I.V. et al. // Nanophotonics. 2022. V. 11. № 17. P. 3901. https://doi.org/10.1515/nanoph-2022-0091
- Stöhr J., Samant M.G., Cossy-Favre A. et al. // Macromolecules. 1998. V. 31. № 6. P. 1942. https://doi.org/10.1021/ma9711708
- Shen H., Nan R., Jian Z., Li X. // J. Mater. Sci. 2019. V. 54. № 17. P. 11596. https://doi.org/10.1007/s10853-019-03710-6
- Beadie G., Brindza M., Flynn R.A. et al. // Appl. Opt. 2015. V. 54. № 31. P. F139. https://doi.org/10.1364/AO.54.00F139
- Ishteev A., Konstantinova K., Ermolaev G. et al. // J. Mater. Chem. C. 2022. V. 10. № 15. P. 5821. https://doi.org/10.1039/D2TC00128D
- König T.A.F., Ledin P.A., Kerszulis J. et al. // ACS Nano. 2014. V. 8. № 6. P. 6182. https://doi.org/10.1021/nn501601e
- Rubin M. // Sol. En. Mater. 1985. V. 12. № 4. P. 275. https://doi.org/10.1016/0165-1633(85)90052-8
- Elliott R.J. // Phys. Rev. 1957. V. 108. № 6. P. 1384. https://doi.org/10.1103/PhysRev.108.1384
- Ruf F., Aygüler M.F., Giesbrecht N. et al. // APL Maters. 2019. V. 7. № 3. P. 031113. https://doi.org/10.1063/1.5083792
- Kühner L., Wendisch F.J., Antonov A.A. et al. // Light Sci. Appl. 2023. V. 12. № 1. P. 250. https://doi.org/10.1038/s41377-023-01295-z
- Rubanov S., Munroe P.R. // J. Microsc. 2004. V. 214. № 3. P. 213. https://doi.org/10.1111/j.0022-2720.2004.01327.x
- Gorkunov M.V., Rogov O.Y., Kondratov A.V. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11623. https://doi.org/10.1038/s41598-018-29977-4
- Koshelev K., Kivshar Y. // ACS Photonics. 2021. V. 8. № 1. P. 102. https://doi.org/10.1021/acsphotonics.0c01315
补充文件
