Polycrystalline methylammonium-lead bromide perovskite films for photonic metasurfaces

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Polycrystalline films of organo-inorganic perovskite semiconductors are promising as a foundation for creating functional optical metasurfaces. The requirements for film structural perfection, thickness uniformity, and defect-free characteristics are much more stringent compared to perovskite films for photovoltaics. This work presents the results of searching for optimal conditions for one-step synthesis of lead methylammonium bromide films using centrifugation, and describes the successful fabrication of subwavelength optical gratings from these films through focused ion beam processing. The measured spectra of light transmission through the gratings demonstrated their excellent optical quality and confirmed the possibility of creating semiconductor photon metasurfaces with submicrometer periodicity and high-Q dielectric resonances.

全文:

受限制的访问

作者简介

G. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow

I. Kasyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow

V. Artemov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow

A. Ezhov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”;
M.V. Lomonosov Moscow State University, Faculty of Physics

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow; Moscow

I. Pavlov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow

A. Antonov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow

Guankui Long

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University

Email: yurasik.georgy@yandex.ru
台湾, Tianjin

M. Gorkunov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Email: yurasik.georgy@yandex.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Kim J.Y., Lee J.-W., Jung H.S.et al. // Chem. Rev. 2020. V. 120. № 15. P. 7867. https://doi.org/10.1021/acs.chemrev.0c00107
  2. Kovalenko M.V., Protesescu L., Bodnarchuk M.I. // Science. 2017. V. 358. № 6364. P. 745. https://doi.org/10.1126/science.aam7093
  3. Berestennikov A.S., Voroshilov P.M., Makarov S.V., Kivshar Y.S. // Appl. Phys. Rev. 2019. V. 6. № 3. P. 031307. https://doi.org/10.1063/1.5107449
  4. Xiao M., Huang F., Huang W. et al. // Ang. Chem. Int. Ed. 2014. V. 53. № 37. P. 9898. https://doi.org/10.1002/anie.201405334
  5. Swain B.S., Lee J. // Physica E. 2021. V. 126. P. 114420. https://doi.org/10.1016/j.physe.2020.114420
  6. Long G., Adamo G., Tian J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1551. https://doi.org/10.1038/s41467-022-29253-0
  7. Saidaminov M.I., Abdelhady A.L., Murali B. et al. // Nat. Commun. 2015. V. 6. № 1. P. 7586. https://doi.org/10.1038/ncomms8586
  8. Gorkunov M.V., Mamonova A.V., Kasyanova I.V. et al. // Nanophotonics. 2022. V. 11. № 17. P. 3901. https://doi.org/10.1515/nanoph-2022-0091
  9. Stöhr J., Samant M.G., Cossy-Favre A. et al. // Macromolecules. 1998. V. 31. № 6. P. 1942. https://doi.org/10.1021/ma9711708
  10. Shen H., Nan R., Jian Z., Li X. // J. Mater. Sci. 2019. V. 54. № 17. P. 11596. https://doi.org/10.1007/s10853-019-03710-6
  11. Beadie G., Brindza M., Flynn R.A. et al. // Appl. Opt. 2015. V. 54. № 31. P. F139. https://doi.org/10.1364/AO.54.00F139
  12. Ishteev A., Konstantinova K., Ermolaev G. et al. // J. Mater. Chem. C. 2022. V. 10. № 15. P. 5821. https://doi.org/10.1039/D2TC00128D
  13. König T.A.F., Ledin P.A., Kerszulis J. et al. // ACS Nano. 2014. V. 8. № 6. P. 6182. https://doi.org/10.1021/nn501601e
  14. Rubin M. // Sol. En. Mater. 1985. V. 12. № 4. P. 275. https://doi.org/10.1016/0165-1633(85)90052-8
  15. Elliott R.J. // Phys. Rev. 1957. V. 108. № 6. P. 1384. https://doi.org/10.1103/PhysRev.108.1384
  16. Ruf F., Aygüler M.F., Giesbrecht N. et al. // APL Maters. 2019. V. 7. № 3. P. 031113. https://doi.org/10.1063/1.5083792
  17. Kühner L., Wendisch F.J., Antonov A.A. et al. // Light Sci. Appl. 2023. V. 12. № 1. P. 250. https://doi.org/10.1038/s41377-023-01295-z
  18. Rubanov S., Munroe P.R. // J. Microsc. 2004. V. 214. № 3. P. 213. https://doi.org/10.1111/j.0022-2720.2004.01327.x
  19. Gorkunov M.V., Rogov O.Y., Kondratov A.V. et al. // Sci. Rep. 2018. V. 8. № 1. P. 11623. https://doi.org/10.1038/s41598-018-29977-4
  20. Koshelev K., Kivshar Y. // ACS Photonics. 2021. V. 8. № 1. P. 102. https://doi.org/10.1021/acsphotonics.0c01315

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the average thickness of MAPbBr3 films obtained at optimal times of antisolvent addition on the rotation speed of the glass substrate.

下载 (47KB)
3. Fig. 2. Optical images of MAPbBr3 films prepared at a centrifuge speed of 4400 rpm, a temperature of 22°C and different antisolvent addition times τ = 2, 4, 5, 6 s and ∞ (antisolvent was not added).

下载 (234KB)
4. Fig. 3. SEM images of cross-sections of MAPbBr3 films deposited on a glass substrate with an ITO layer, cleaned by ultrasonic treatment (a), air plasma (b), and coated with a thin polyimide film (c).

下载 (142KB)
5. Fig. 4. Diffraction patterns of MAPbBr3 powder (1) and polycrystalline film (2).

下载 (61KB)
6. Fig. 5. Structure of test gratings created by focused ion beam etching of parallel slits with increasing irradiation time: SEM image of a cross section (a), dark-field STEM image of a section (b), distribution maps of bromine and gallium atoms (c) and only gallium (d), obtained by energy-dispersive X-ray spectroscopy.

下载 (297KB)
7. Fig. 6. SEM image of a subwavelength grating created by focused ion beam etching of parallel slits in a MAPbBr3 film with a period of 400 nm: a general view of the structure in the form of a square with a side of 80 μm and an image of its fragment obtained at higher magnification (insert).

下载 (263KB)
8. Fig. 7. Optical properties of the MAPbBr3 film (a) and the subwavelength grating created by a focused ion beam by etching parallel slits with a period of 400 nm in it (b): simulated (solid lines) and measured (dots) transmission spectra of light linearly polarized across the slits. On the right are diagrams of a flat film and an elementary cell of the subwavelength grating, respectively.

下载 (294KB)

版权所有 © Russian Academy of Sciences, 2024