Superhydrophobic coating based on EP-140 epoxy enamel: a study of mechanical endurance under external actions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this study, the mechanical durability of a superhydrophobic coating fabricated on the basis of industrial epoxy enamel EP-140 was investigated. To achieve a superhydrophobic state, the applied coating was modified by pulsed laser texturing and fluorosilane chemisorption. The aim of the research was to evaluate the coating’s resistance to various mechanical loads typical for outdoor use: prolonged water contact, exposure to high-speed water jets, abrasive wear from falling sand, and multiple removals of adhesive tape. It was shown that the combined approach used in superhydrophobic treatment not only provides high water repellency but also significant resistance to degradation. Experiments revealed only a slight decrease in wetting characteristics, while the heterogeneous wetting regime was maintained, confirming that the coating retains its functionality even under extreme mechanical impacts. The obtained data indicate the promising application of the developed coating in industries that require a combination of high wear resistance and cost-effectiveness.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Kuzina

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: emelyanenko.kirill@gmail.com
Ресей, Bldg. 4, 31, Leninsky Ave., Moscow, 119071

M. Teplonogova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: emelyanenko.kirill@gmail.com
Реюньон, 31, Leninsky Ave., Moscow, 119071

A. Buglak

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: emelyanenko.kirill@gmail.com
Ресей, Bldg. 4, 31, Leninsky Ave., Moscow, 119071

K. Emelyanenko

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: emelyanenko.kirill@gmail.com
Ресей, Bldg. 4, 31, Leninsky Ave., Moscow, 119071

Әдебиет тізімі

  1. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 583–600. https://doi.org/10.1070/RC2008v077n07ABEH003775
  2. Tian X., Verho T., Ras R.H.A. Moving superhydrophobic surfaces toward real-world applications // Science. 2016. V. 352. № 6282. P. 142–143. https://doi.org/10.1126/science.aaf2073
  3. Darmanin T., Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials // J. Mater. Chem. A. 2014. V. 2. № 39. P. 16319–16359. https://doi.org/10.1039/C4TA02071E
  4. Jeevahan J., Chandrasekaran M., Britto Joseph G., Durairaj R.B., Mageshwaran G. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges // J. Coat. Technol. Res. 2018. V. 15. № 2. P. 231–250. https://doi.org/10.1007/s11998-017-0011-x
  5. Milionis A., Loth E., Bayer I.S. Recent advances in the mechanical durability of superhydrophobic materials // Adv. Colloid Interface Sci. 2016. V. 229. P. 57–79. https://doi.org/10.1016/j.cis.2015.12.007
  6. Verho T., Bower C., Andrew P., Franssila S., Ikkala O., Ras R.H.A. Mechanically durable superhydrophobic surfaces // Adv. Mater. 2011. V. 23. № 5. P. 673–678. https://doi.org/10.1002/adma.201003129
  7. Кузина Е.А., Емельяненко А.М., Бойнович Л.Б. Супергидрофобизация окрашенных поверхностей для повышения их защитных свойств и придания новых функциональных свойств материалам // Доклады Академии Наук Серия химическая. 2025. № 1.
  8. Emelyanenko A.M., Boinovich L.B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles // Instruments and Experimental Techniques. 2002. V. 45. № 1. P. 44–49. https://doi.org/10.1023/A:1014544124713
  9. Emelyanenko A.M., Boinovich L.B. Analysis of wetting as an efficient method for studying the characteristics of coatings and surfaces and the processes that occur on them: A review // Inorg. Mater. 2011. V. 47. № 15. P. 1667–1675. https://doi.org/10.1134/S0020168511150064
  10. Емельяненко А.М., Бойнович Л.Б. Применение цифровой обработки видеоизображений для определения параметров сидящих и висящих капель // Коллоидный журнал. 2001. Т. 63. № 2. С. 178–193.
  11. Кузина Е.А., Омран Ф.Ш., Емельяненко А.М., Бойнович Л.Б. О важности подбора режима гидрофобизации для получения стойких супергидрофобных покрытий // Коллоидный журнал. 2023. Т. 85. № 1. С. 63–67. https://doi.org/10.31857/S0023291222600614
  12. He S., Chen J., Lu Y., Huang S., Feng K. Enhanced waterproof performance of superhydrophobic SiO2/PDMS coating // Prog. Org. Coat. 2024. V. 197. P. 108845. https://doi.org/10.1016/j.porgcoat.2024.108845
  13. Kumar A., Meena M.K. Fabrication of durable corrosion-resistant polyurethane/SiO2 nanoparticle composite coating on aluminium // Colloid Polym. Sci. 2021. V. 299. № 6. P. 915–924. https://doi.org/10.1007/s00396-021-04814-9
  14. Mousavi S.M.A., Pitchumani R. A comparative study of mechanical and chemical durability of non-wetting superhydrophobic and lubricant-infused surfaces // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 643. P. 128711. https://doi.org/10.1016/j.colsurfa.2022.128711
  15. Li T., Lu C., Yuan Z., Liu C., Li Y., Liu Y. Mechanical stability and anti-icing performance of robust aluminum-based superhydrophobic coating // Surface Technology. 2022. V. 51. № 11. P. 385–394. https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.11.036
  16. Golubitchenko T.V., Emelyanenko K.A., Krasovsky V.G., Emelyanenko A.M., Boinovich L.B. Are the imidazole ionic liquids suitable lubricants for slippery coatings? // Langmuir. 2025. V. 41. № 4. P. 2724–2734. https://doi.org/10.1021/acs.langmuir.4c04543
  17. Kuzina E.A., Emelyanenko K.A., Teplonogova M.A., Emelyanenko A.M., Boinovich L.B. Durable superhydrophobic coatings on tungsten surface by nanosecond laser ablation and fluorooxysilane modification // Materials. 2025. V. 16. № 1. P. 196. https://doi.org/10.3390/ma16010196
  18. Liu J.J., He C.Y., Liu B.H., Wang Z.Q., Zhao S.J., Lu Z.W., Zhang Y.Z., Tang Z.Q., Gao X.H., Aday X. A robust photo-thermal and electro-thermal superhydrphobic surface for all-weather anti-icing/deicing // Chem. Eng. J. 2024. V. 489. P. 151338. https://doi.org/10.1016/j.cej.2024.151338
  19. Zhou X., Ou J., Hu Y., Wang F., Fang X., Li W., Chini S.F., Amirfazli A. Robust superhydrophobic coating for photothermal anti-icing and de-icing via electrostatic powder spraying // Prog. Org. Coat. 2024. V. 197. P.108778. https://doi.org/10.1016/j.porgcoat.2024.108778
  20. Deng X., Mammen L., Zhao Y., Lellig P., Müllen K., Li C., Butt H.J., Vollmer D. Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules // Adv. Mater. (Weinheim). V. 23. № 26. P. 2962–2965. https://doi.org/10.1002/adma.201100410
  21. Birlik Demirel G., Aygül E. Robust and flexible superhydrophobic/superoleophilic melamine sponges for oil-water separation // C Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 577. P. 613–621. https://doi.org/10.1016/j.colsurfa.2019.05.081
  22. Boinovich L.B., Emelyanenko A.M., Ivanov V.K., Pashinin A.S. Durable icephobic coating for stainless steel // ACS Appl. Mater. Interfaces. 2013. V. 5. № 7. P. 2549–2554. https://doi.org/10.1021/am3031272
  23. Allahdini A., Jafari R., Momen G. Transparent non-fluorinated superhydrophobic coating with enhanced anti-icing performance // Prog. Org. Coat. 2022. V. 165. P. 106758. https://doi.org/10.1016/j.porgcoat.2022.106758

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1

Жүктеу (191KB)
3. Fig. 1. SEM images of freshly prepared superhydrophobic enamel surface at different magnifications.

Жүктеу (508KB)
4. Fig. 2. Photographs of liquid droplets with different surface tensions on superhydrophobic enamel.

Жүктеу (92KB)
5. Fig. 3. (a) Evolution of wetting and rolling angles during exposure in a water jet; (b) evolution of wetting angle and surface tension during contact with a water drop.

Жүктеу (222KB)
6. Fig. 4. Evolution of wetting and rolling angles under the action of abrasion cycles of falling sand.

Жүктеу (108KB)
7. Fig. 5. Evolution of wetting and rolling angles under the action of adhesive tape tear-off cycles.

Жүктеу (126KB)
8. Fig. 6. 3D topographic images of the superhydrophobic enamel surface before (a) and after (b) the adhesive tape tear-off test obtained on a confocal microscope.

Жүктеу (847KB)

© Russian Academy of Sciences, 2025