Surface Properties of Gamma-Irradiated Polypropylene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

polypropylene (PP) has been studied as a function of the absorbed dose. It has been established that γ-irradiation leads to an increase in the free surface energy of the polymer, its acid–base component, and the surface polarity. An analysis of the IR spectra of γ-irradiated PP samples indicated the formation of oxygen-containing groups in the composition of PP macromolecules, which was confirmed by the values of the surface acidity parameter. An increase in the dose led to an increase in the concentration of products of radiation-induced conversion. A significant increase in the melt flow index (MFI) of polypropylene up to an absorbed dose of 150 kGy also evidenced the occurrence of oxidation and destruction processes. The MFI decreased at radiation doses above 150 kGy, and this fact indicates that such doses of ionizing radiation lead to the predominance of the processes of polymer structuring or crosslinking.

Sobre autores

S. Bogdanova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Kazan National Research Technological University

Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia; Kazan, Tatarstan, 420015 Russia

I. Shaimukhametova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Kazan National Research Technological University

Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia; Kazan, Tatarstan, 420015 Russia

R. Galimzyanova

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, Tatarstan, 420015 Russia

Yu. Khakimullin

Kazan National Research Technological University

Email: sadush@icp.ac.ru
Kazan, Tatarstan, 420015 Russia

T. Rudneva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia

S. Demidov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia

S. Allayarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sadush@icp.ac.ru
Chernogolovka, Moscow oblast, 142432 Russia

Bibliografia

  1. Gavrila D.E., Stoian V., Caramitu A., Mitrea S. Composite Materials [Internet]/Chowdhury M. A., Armenta J.L.R., Rahman M.M., Asiri A., Inamuddin I. eds. London: IntechOpen, 2020. https://www.intechopen.com/chapters/71600 [cited 2022 Dec 27].
  2. Van Lierde S. // Med Device Technol. 2004. V. 15. № 5. P. 33.
  3. Лисаневич М.С., Галимзянова Р.Ю., Хакимуллин Ю.Н., Федорова Т.А., Мезенцева Е.В., Иванов В.В. // Изв. высш. уч. заведений. Технология текстильной промышленности. 2021. № 5. С. 94.
  4. Лисаневич М.С., Галимзянова Р.Ю., Мусин И.Н., Макаров Т.В. Стерилизация медицинских изделий // Учебное пособие. Казань: Изд-во: ООО “Редакционно-издательский центр “Школа”, 2020. 86 с.
  5. Галимзянова Р.Ю., Рахматуллина Э.Р., Лисаневич М.С., Хакимуллин Ю.Н // Вестник технологического университета. 2020. Т. 23. № 2. С. 19.
  6. Lisanevich M.S., Rakhmatullina E.R., Khakimullin Yu N., Galimzyanova R.Yu., Akhmadullin R.M., Perukhin Y.V. // Key Engineering Materials. Trans. 2019. V. 816. P. 328.
  7. Иванов В.С. Радиационная химия полимеров. Ленинград: Химия, 1988. С. 206.
  8. Shaimukhametova I.F., Shigabieva Y.A., Bogdanova S.A., Allayarov S.R. // High Energy Chem. 2020. V. 54. № 2. P. 111.
  9. Shaimukhametova I.F., Allayarov S.R., Demidov S.V., Bogdanova S.A. // High Energy Chem. 2021. V. 55. № 5. P. 381.
  10. Allayarov S.R., Confer M.P., Bogdanova S.A., Shigabieva Y.A., Dixon D.A. // Polymer Degradation and Stability. 2021. V. 191. P. 109697.
  11. Allayarov S.R., Confer M.P., Demidov S.V., Malkov G.V., Bogdanova S.A., Shaimukhametova I.F., Nikolsky V.G., Perukhin Yu.V., Podvalnaya Yu.V., Zyukin I.V., Dixon D.A. // Polymer. 2021. V. 237. P. 124342.
  12. Allayarov S.R., Confer M.P., Bogdanova S.A., Rudneva T.N., Allayarova U.Yu, Shaimukhametova I.F., Demidov S.V., Mishchenko D.V., Klimanova E.N., Sashenkova T.E., Chekalina S.D., Aldoshin S.M., Dixon D.A. // Radiation Physics and Chemistry. 2022. V. 201. P. 110436.
  13. Berger E.J. // J. Adhes. Sci. Technol. 1990. V. 4. № 5. P. 373.
  14. Старостина И.А., Стоянов О.В., Краус Э. Развитие методов смачивания для оценки состояния поверхности. Казань: КНИТУ, 2019. 152 с.
  15. Старостина И.А., Стоянов О.В. Кислотно-основные взаимодействия и адгезия в металл-полимерных системах. Казань: КГТУ, 2010. 195 с.
  16. Fowkes F.M., Wendt R.C. // J. Phys. Chem. 1963. V. 67. № 12. P. 2538.
  17. Owens D.K. // J. Appl. Polym. Sci. 1969. V. 13. P. 1741.
  18. Vijayendran B.R. // J. Appl. Polym. Sci. 1979. V. 23. № 3. P. 733.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (29KB)
3.

Baixar (249KB)
4.

Baixar (32KB)
5.

Baixar (29KB)

Declaração de direitos autorais © С.А. Богданова, И.Ф. Шаймухаметова, Р.Ю. Галимзянова, Ю.Н. Хакимуллин, Т.Н. Руднева, С.В. Демидов, С.Р. Аллаяров, 2023