Influence of Nonthermal Plasma Jet on the Surface Properties of Wheat Seeds

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The change in the surface properties of wheat seeds under the influence of a nonthermal atmospheric-pressure plasma jet is shown. After plasma treatment, the surface of wheat seeds becomes hydrophilic and is characterized by a decrease in the contact angle, an increase in surface energy, and an increase in seed water uptake.

Sobre autores

B. Baldanov

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Email: baibat@mail.ru
Ulan-Ude, 670031 Buryatia, Russia

Ts. Ranzhurov

Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: baibat@mail.ru
Ulan-Ude, 670031 Buryatia, Russia

Bibliografia

  1. Tendero C., Tixier C., Tristant P., et al. // Spectrochim. Acta B. 2006. V. 61. P. 2.
  2. Nehra V., Kumar A., Dwivedi H.K. // Int. J. Eng. 2008. V. 2. P. 53.
  3. Schutze A., Jeong J.Y., Babayan S.E., et al. // IEEE Trans. Plasma Sci. 1998. V. 26. P. 1685.
  4. Lu X., Laroussi M., Puech V. // Plasma Sources Sci. Technol. 2012. V. 21. P. 1.
  5. Jiang J., He X., Li L., et al. // Plasma Sci. Technol. 2014. V. 16. P. 54.
  6. Zhao C., Piao S., Huang Y., et al. // Nat. Commun. 2016. V. 7. P. 13530.
  7. Zahoranová A., Henselová M., Hudecová D., et al. // Plasma Chem. Plasma Process. 2016. V. 36. P. 397.
  8. Dobrin D., Magureanu M., Mandache N.B., et al. // Innovative Food Science and Emerging Technologies. 2015. V. 29. P. 255.
  9. Bormashenko E., Shapira Y., Grynyov R., et al. // J. Exp. Bot. 2015. V. 66. P. 4013.
  10. Moisan M., Barbeau J., Moreau S., et al. // Int. J. Pharm. 2001. V. 226. P. 1.
  11. Liu H.X., Chen J.R., Yang L.Q., et al. // Appl. Surf. Sci. 2008. V. 254. P. 1815.
  12. Zhang X., Huang J., Liu X. et al. // J. Appl. Phys. 2009. V. 105(6). P. 063302.
  13. Deng X.T., Shi J.J., Chen H.L., et al. // Appl. Phys. Lett. 2007. V. 90(1). P. 013903.
  14. Ji Y.Y., Hong Y.C., Lee S.H., et al. // Surf. Coat. Technol. 2008. V. 202 (22–23). P. 5663.
  15. Shashurin A., Keidar M., Bronnikov S., et al. // Appl. Phys. Lett. 2008. V. 93(18) P. 181501.
  16. Hong Y.C., Uhm H.S. // Appl. Phys. Lett. 2006. V. 89(22). P. 221504.
  17. Kolb J.F., Mohamed A.A.H., Price R.O., et al. // Appl. Phys. Lett. 2008. V. 92. P. 1.
  18. Lu X.P., Jiang Z.H., Xiong Q., et al. // Appl. Phys. Lett. 2008. V. 92. P. 081502.
  19. Hong Y.C., Uhm H.S. // Appl. Phys. Lett. 2006. V. 89. P. 221504.
  20. Zhang X., Li M., Zhou R., et al. // Applied Phys. Lett. 2008. V. 93. P. 021502.
  21. Hong Y.C., Uhm H.S., Yi W.J. // Appl. Phys. Lett. 2008. V. 93. P. 051504.
  22. Nie Q.Y., Ren C.S., Wang D.Z., et al. // Appl. Phys. Lett. 2008. V. 93. P. 011503.
  23. Hong Y.C., Cho S.C., Kim J.H., et al. // Phys. Plasmas. 2007. V. 14. P. 074502.
  24. Hong Y.C., Cho S.C., Uhm H.S. // Appl. Phys. Lett. 2007. V. 90. P. 141501.
  25. Lotfy K // J. Mod. Phys. 2017. V. 8. P. 1901.
  26. Bormashenko E., Grynyov R., Bormashenko Y., et al. // Scientific Reports. 2012. V. 2. P. 741.
  27. Henselova M., Slovakova L., Martinka M., et al. // Biologia. 2012. V. 67. P. 490.
  28. Randeniya L.K., de Groot G.J.J.B. // Plasma Processes and Polymers. 2015. V. 12. P. 608.
  29. Kitazaki S., Koga K., Shiratani M., et al. // Japanese Journal of Applied Physics. 2012. V. 51. 01AE01.
  30. Baldanov B.B., Ranzhurov Ts.V., Sordonova M.N., et al. // Plasma Physics Reports. 2020. V. 46. P. 110.
  31. Filatova I., Azharonok V., Shik A., et al. // Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security, Ser. A: Chemistry and Biology. 2012. P. 469.
  32. Dhayal M., Lee S.Y., Park S.U. // Vacuum. 2006. V. 80. P. 499.
  33. Семенов А.П., Балданов Б.Б., Ранжуров Ц.В. // Приборы и техника эксперимента. 2019. № 3. С. 130.
  34. Stalder A.F., Melchior T., Müller M., et al. // Colloids Surfaces A Physicochem Eng Asp. 2010. V. 364. № 1. P. 72.
  35. Deshmukh R.R., Shetty A.R. // Journal of Applied Polymer Science. 2008. V. 107. P. 3707.
  36. Šerá B., Špatenka P., Šerý M., et al. // IEEE Trans. Plasma Sci. 2010. V. 38. P. 2963.
  37. Балданов Б.Б., Ранжуров Ц.В. // Химия высоких энергий. 2022. Т. 56. № 4. С. 310.
  38. Zahoranova A., Henselova M., Hudecova D., et al. // Plasma Chem. Plasma Process. 2015. V. 36. P. 397.
  39. Adebe A.T., Modi A.T. // Res. J. Seed Sci. 2009. V. 2. P. 23.
  40. Lee K.H., Kim H.-J., Woo K.S., et al. // LWT – Food Sci. Technol. 2016. V. 73. P. 442.
  41. Ulbin-Figlewicz N., Brychcy E., Jarmoluk A. // J. Food Sci. Technol. 2015. V. 52. P. 1228.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (535KB)
3.

Baixar (31KB)
4.

Baixar (31KB)
5.

Baixar (1MB)
6.

Baixar (92KB)

Declaração de direitos autorais © Б.Б. Балданов, Ц.В. Ранжуров, 2023