Role of molecular nitrogen in the radiolysis of the primary coolant of a water-water energy reactor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of modeling of radiation-chemical transformations in the coolant of the VVER primary circuit are presented. It is shown that under conditions of intensive irradiation molecular nitrogen dissolved in the coolant exhibits chemical activity. The reaction of N2 molecule with excited hydroxyl initiates the formation of ammonia and nitrous acid. Further decomposition of ammonia yields only oxidized forms of nitrogen, with N2 acting as an intermediate product. Maintenance of hydrogen and oxygen concentrations within the norms at ammonia water-chemical regime (WCR) appears to be possible only at constant dosing of NH3 and degassing of the coolant. On the contrary, in the case of WCR with dosing (at the initial moment) of H2 in the absence of perturbations the steady-state regime is quickly established, satisfying the requirements of the WCR norms for VVER. The difference between the two WCRs is due to the presence of nitrogen in the NH3 molecule and its transformations as an element, regardless of the initial chemical form.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Grachev

Kurchatov Institute

Хат алмасуға жауапты Автор.
Email: Grachev_VA@nrcki.ru
Ресей, Moscow

O. Bystrova

Kurchatov Institute

Email: Grachev_VA@nrcki.ru
Ресей, Moscow

A. Sazonov

Kurchatov Institute

Email: Grachev_VA@nrcki.ru
Ресей, Moscow

Әдебиет тізімі

  1. Bulanov A.V., Kolesov B.I., Lukashenko M.L. et al. // Atomnaya Energiya. 2000. V. 88. No. 5. P. 353.
  2. Dmitriev M.T. // Journal of Applied Chemistry. 1963. V. 36. P. 1123.
  3. Shaede E.A., Edwards B.F.P., Walker D.C. // J. Geophys. Phys. Chem. 1970. V. 74. № 17. P. 3217.
  4. Kabakchi S.A., Arkhipov O.P., Verkhovskaya A.O., Lukashenko M.L. // VANT Physics of Nuclear Reactors. 2023. № 2. P. 105.
  5. Karasawa H., Ibe E., Uchida S., Etoh H., Yasuda T. // Radiat. Phys. Chem. 1991. V. 37. № 2. P. 193.
  6. Etoh Y., Karasawa H., Ibe E., et al. // Journal of Nuclear Science and Technology. 1987. V. 24. № 8. P. 672.
  7. Yamamoto Y., Suzuki T. // J. Phys. Phys. Chem. Lett. 2020. V. 11. P. 5510.
  8. German K.R. // J. Chem. Phys. 1975. V. 63. P. 5252.
  9. German K.R. // J. Chem. Phys. 1975. V. 62. P. 2584.
  10. Qin X., Zhang S.D. // Journal of the Korean Physical Society. 2014. V. 65. № 12. P. 2017.
  11. Zanganeh A.H., Fillion J.H., Ruiz J.et al. // J. Chem. Phys. 2000. V. 112. P. 5660.
  12. Hans A., Ozga C., Seide R. et al. // J. Phys. Phys. Chem., B. 2017, V. 121. № 10. P. 2326.
  13. Miyazaki T., Nagasaka S., Kamiya Y., Tanimura K. // J. Phys. Phys. Chem. 1993. V. 97. № 41. P. 10715.
  14. Mordaunt D.H., Ashfold M.N.R., Dixon R.N.. // J. Chem. Phys. 1994. V. 100. P. 7360.
  15. Grachev V.A., Sazonov A.B. // High Energy Chemistry. 2022. V. 56. № 2. P. 120.
  16. Egorov Yu.A. Fundamentals of Radiation Safety of Nuclear Power Plants. Moscow: Energoizdat, 1982. 272 p.
  17. Gordeev A.V., Ershov B.G. // Atomic Energy. 1992. V. 73. № 4. P. 322.
  18. Gordeev A.V., Ershov B.G. // Atomic Energy. 1992. V. 73. № 4. P. 325.
  19. Elliot. A.J., Chenier M.P., Ouellette D.C. // J. Chem. Chem. Soc., Faraday Trans. 1993. V. 89. № 8. P. 1193.
  20. Sunaryo G.R., Katsumura Y., Hiroishi D., Ishigure K. // Radiat. Phys. Chem. 1995. V. 45. № 1. P. 131.
  21. Kabakchi S.A. Mathematical modeling of radiation impact on water coolants of nuclear power plants. Moscow: Kurchatov Institute, 2018. 111 p.
  22. da Silva G., Dlugogorski B.Z., Kennedy E.M. // International Journal of Chemical Kinetics. 2007. V. 39. № 12. P. 645.
  23. da Silva G., Dlugogorski B.Z., Kennedy E.M. // Chem. Eng. Sci. 2006. V. 61. P. 3186.
  24. Habersbergerova A., Bartonicek B. // Nukleonika. 1981. V. 26. № 7–8. P.783.
  25. Dey G.R. // Radiat. Phys. Chem. 2011. V. 80. № 3. P. 394.
  26. Grachev V.A., Sazonov A.B., Bystrova O.S. // XXII International Conference of Young Specialists on Nuclear Power Plants. Collection of reports. Podolsk, JSC OKB GIDROPRESS, 2022. P. 128.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Decomposition of ammonia in the coolant of a research reactor. Points – experiment [24], lines – calculation. 1, □ – 5.5 mmol/l NH3 + 70 mmol/l H3BO3 (30°C); 2, ▲ – 5.25 mmol/l NH3 (30°C); 3, × – 5.3 mmol/l NH3 + 168 mmol/l H3BO3 (180°C).

Жүктеу (149KB)
3. Fig. 2. The yield of nitrogen binding during irradiation of a solution of H2 (mg/kg) / N2 (mg/kg): 1 – 3/20; 2 – 4/35; 3 – 5/50; 4 – 6/65; 5 – 8/95.

Жүктеу (192KB)
4. Fig. 3. Yields of bound nitrogen and ammonia formation (N atom/100 eV) at 25°C depending on the nitrogen pressure P above the solution. Dots – experiment [2], solid lines – calculation. ♦, 1 – N2; ◊, 2 – NH3.

Жүктеу (120KB)
5. Fig. 4. Concentration of water and ammonia radiolysis products in the coolant of WWER, WCR “N”: 1 – N2; 2 – H2; 3 – NH3; 4 – HNO2; 5 – oxidation products; 6 – O2.

Жүктеу (141KB)
6. Fig. 5. Concentration of water and ammonia radiolysis products in the coolant of WWER, WCR “A”: 1 – N2; 2 – H2; 3 – NH3; 4 – HNO2; 5 – oxidation products; 6 – O2.

Жүктеу (139KB)
7. Fig. 6. Concentration of water and ammonia radiolysis products in the coolant of WWER, WCR “AN”: 1 – N2; 2 – H2; 3 – NH3; 4 – HNO2; 5 – oxidation products; 6 – O2.

Жүктеу (138KB)
8. Fig. 7. Concentration of water and ammonia radiolysis products in the coolant of WWER, WCR “C”: 1 – N2; 2 – H2; 3 – NH3; 4 – HNO2; 5 – oxidation products; 6 – O2.

Жүктеу (133KB)
9. Fig. 8. Concentration of water and ammonia radiolysis products in the coolant of WWER, WCR “N”: 1 – N2; 2 – H2; 3 – NH3; 4 – HNO2; 5 – NO.

Жүктеу (125KB)

© Russian Academy of Sciences, 2024