The Effect of Isothermal Multidirectional Forging on the Microstructure and Properties of Cu–40%Zn–2%Mn Alloy
- 作者: Kishchik M.S.1, Kishchik A.A.1, Mochugovskiy A.G.1, Cheverikin V.V.1, Kotov A.D.1
-
隶属关系:
- National University of Science and Technology MISIS, Moscow, 119049 Russia
- 期: 卷 126, 编号 5 (2025)
- 页面: 598-607
- 栏目: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://rjraap.com/0015-3230/article/view/690797
- DOI: https://doi.org/10.31857/S0015323025050092
- EDN: https://elibrary.ru/vdtnya
- ID: 690797
如何引用文章
详细
The deformation behavior and changes in the microstructure of manganese brass Cu–40%Zn–2%Mn (wt%) during multidirectional isothermal forging (MDF) at temperatures of 400°C and 500°C, which is ~ 50°C lower and higher than the temperature of the β→β' transition, were studied. It has been shown that MDF at both temperatures promotes the formation of a homogeneous and fine-grained structure with an average grain size of α- and β'-phases of ~ 5 and ~ 12 microns, respectively, increasing the hardness by 2.5 times from 130 HV in the initial state to ~ 310 HV after the total true deformation ∑e = 7.2. An increase in the true strain to ∑e = 14.4 did not have an additional strengthening effect. In the case of MDF at 400°C, an increase in the true deformation was accompanied by a slight grinding of the grains of the α and β' phases to 3.6 and 9.2 microns, respectively, and in the case of deformation at 500°C, it led to an increase in their sizes to 7.1 and 17.5 microns, respectively.
作者简介
M. Kishchik
National University of Science and Technology MISIS, Moscow, 119049 Russia
Email: kishchik.ms@misis.ru
A. Kishchik
National University of Science and Technology MISIS, Moscow, 119049 Russia
A. Mochugovskiy
National University of Science and Technology MISIS, Moscow, 119049 Russia
V. Cheverikin
National University of Science and Technology MISIS, Moscow, 119049 Russia
A. Kotov
National University of Science and Technology MISIS, Moscow, 119049 Russia
参考
- Ефремов Б.Н. Латуни. От фазового строения к структуре и свойствам: Монография. Москва: ИНФРА-М, 2014. 314 с.
- Hussein Naser Radhi, Mohsin Talib Mohammed, and Alaa M.H. Aljassani. Influence of ECAP processing on mechanical and wear properties of brass alloy // Mater. Today: Proceedings. 2021. V. 44. Р. 2399–2402. https://doi.org/10.1016/j.matpr.2020.12.461
- Hussein Naser Radhi, Alaa M.H. Aljassani, and Mohsin Talib Mohammed. Effect of ECAP on microstructure, mechanical and tribological properties of aluminum and brass alloys: A review // Mater. Today: Proceedings. 2020. V. 26. Р. 2302–2307. https://doi.org/10.1016/j.matpr.2020.02.49
- Filippov A.V., Tarasov S.Yu, Fortuna S.V., Podgornykh O.A., Shamarin N.N., and Rubtsov V.E. Microstructural, mechanical and acoustic emission-assisted wear characterization of equal channel angular pressed (ECAP) low stacking fault energy brass // Tribology International. 2018. V. 123. Р. 273–285. https://doi.org/10.1016/j.triboint.2018.03.023
- Mousavi S.E., Naghshekesh N., Ahmadi F., Sadeghi B., and Cavaliere P. Effect of lead on the crack propagation and the mechanical properties of Brass processed by ECAP at different temperatures // Mater. Sci. Eng.: A. 2018. V. 728. P. 231–238. https://doi.org/10.1016/j.msea.2018.05.032
- Kim H.S., Kim W.Y., and Song K.H. Effect of post-heat-treatment in ECAP processed Cu-40%Zn brass // J. Alloys Compounds. Elsevier B. 2012. V. 536. P. S200–S203. https://doi.org/10.1016/j.jallcom.2011.11.079
- Vidilli A.L., Machado I.F., Edalati K., Botta W.J., Bolfarini C., and Koga G.Y. Wear-resistant ultrafine severely deformed brass (Cu-30Zn) // Mater. Letters. 2024. V. 377. P. 137465. https://doi.org/10.1016/j.matlet.2024.137465
- Azzeddine H., Baudin T., Helbert A.-L., Brisset F., Huang Y., Kawasaki M., Bradai D., and Langdon T.G. A stored energy analysis of grains with shear texture orientations in Cu-Ni-Si and Fe-Ni alloys processed by high-pressure torsion // J. Alloys Compounds. 2021. V. 864. P. 158142. https://doi.org/10.1016/j.jallcom.2020.158142
- Azzeddine H., Bradai D., Baudin T., and Langdon T.G. Texture evolution in high-pressure torsion processing // Progress in Mater. Sci. 2022. V. 125. P. 100886. https://doi.org/10.1016/j.pmatsci.2021.100886
- Panahi S., Roshan I., Diakina E., and Javid R. Effect of strain path during repeated rolling on microstructure, grain refinement, and mechanical properties of Copper/Brass multilayered composites // Mater. Today Comm. 2024. V. 40. P. 110080. https://doi.org/10.1016/j.mtcomm.2024.110080
- Rahmatabadi D., Shahmirzaloo A., Farahani M., Tayyebi M., and Hashemi R. Characterizing the elastic and plastic properties of the multilayered Al/Brass composite produced by ARB using DIC // Mater. Sci. Eng.: A. 2019. V. 753. P. 70–78. https://doi.org/10.1016/j.msea.2019.03.002
- Paseban S., and Toroghinejad M.R. Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process // Mater. Sci. Eng.: A. 2010. V. 527. P. 491–497. https://doi.org/10.1016/j.msea.2009.09.029
- Kishchik M. S., Kotov A.D., Demin D.O., Kishchik A.A., Aksenov S.A., and Mikhaylovskaya A.V. The Effect of Multidirectional Forging on the Deformation and Microstructure of the Al–Mg Alloy // Phys. Met. Metal. 2020. V. 121. P. 597–603. https://doi.org/10.1134/S0031918X20060071
- Mikhaylovskaya A.V., Kishchik M.S., Kotov A.D., and Tabachkova N.Yu. Grain refinement during isothermal multidirectional forging due to β-phase heterogenization in Al-Mg-based alloys // Mater. Letters. 2022. V. 321. P. 132412. https://doi.org/10.1016/j.matlet.2022.132412
- Miura H., Nakao Y., and Taku Sakai. Enhanced Grain Refinement by Mechanical Twinning in a Bulk Cu-30 mass%Zn during Multi-Directional Forging // Mater. Trans. 2007. V. 48. P. 2539–2541. https://doi.org/10.2320/matertrans.MRP2007123
- Shahriyari F., Shaeri M.H., Dashti A., Zarei Z., Noghani M.T., Cho J.H., and Djavanroodi F. Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging // Mater. Sci. Eng. A. 2022. V. 831. P. 142149. https://doi.org/10.1016/j.msea.2021.142149
- Langdon T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement // Acta Mater. 2013. V. 61. P. 7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018
- Kishchik M.S., Mikhaylovskaya A.V., Kotov A.D., Mosleh A.O., AbuShanab W.S., and Portnoy V.K. Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy // Materials. 2018. V. 11. P. 2166. https://doi.org/10.3390/ma11112166
- Dziubińskaa A., Gontarza A., Horzelskab K., Pieśko P. The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology // Procedia Manufacturing. 2015. V. 2. P. 337–341. https://doi.org/10.1016/j.promfg.2015.07.059
- Kundu A., Kapoor R., Tewari R., and Chakravartty J.K. Severe plastic deformation of copper using multiple compression in a channel die // Scripta Mater. 2008. V. 58. P. 235–238. https://doi.org/10.1016/j.scriptamat.2007.09.046
- Li Y.J., and Blum W. Strain rate sensitivity of Cu after severe plastic deformation by multiple compression // Phys. Stat. Sol. (A) Appl. Mater. Sci. 2005. V. 202. P. R119–R121. https://doi.org/10.1002/pssa.200521160
- Gupta R., Srivastava S., Kumar N.K., and Panthi S.K. High leaded tin bronze processing during multi-directional forging: Effect on microstructure and mechanical properties // Mater. Sci. Eng.: A. 2016. V. 654. P. 282–291. https://doi.org/10.1016/j.msea.2015.12.068
- Утяшев Ф.З., Рааб Г.И. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов. Уфа: Гилем, НИК Башк. энцикл., 2013. 376 с.
- Li Bing, Fu Qianqian, Yu Rongzhou, Lin Zikai, Wang Jun, Wang Xue, Guan Renguo, and Li Jiehua. Two-Phase Flow Coordination Characteristics of H62 Brass Alloy Prepared by Up-Drawing Continuous Casting // Metals. 2023. V. 13. P. 599. https://doi.org/10.3390/met13030599
- Kishchik M.S., Mochugovskiy A.G., Cuda M., Kishchik A.A., and Mikhaylovskaya A.V. Particle Stimulated Nucleation Effect for Al-Mg-Zr-Sc Alloys with Ni Addition during Multidirectional Forging // Metals. 2023. V. 13. P. 1–15. https://doi.org/10.3390/met13081499
- Liu Q., Xiong Z., Yang J., Fang L., Liu Y., Li J., Zhu X., He R., Zhu W., and Gao Z. Deformation induced phase transition in brass under shock compression // Mater. Today Comm. 2023. V. 35. P. 106224. https://doi.org/10.1016/j.mtcomm.2023.106224
- Wang Y.B., Liao X.Z., Zhao Y.H., Lavernia E.J., Ringer S.P., Horita Z., Langdon T.G., and Zhu Y.T. The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion // Mater. Sci. Eng.: A. 2010. V. 527. P. 4959–4966. https://doi.org/10.1016/j.msea.2010.04.036
- Li Y., Zhao Y.H., Liu W., Xu C., Horita Z., Liao X.Z., Zhu Y.T., Langdon T.G., and Lavernia E.J. Influence of grain size on the density of deformation twins in Cu–30%Zn alloy // Mater. Sci. Eng.: A. 2010. V. 527. P. 3942–3948. https://doi.org/10.1016/j.msea.2010.02.076
- Farabi E., Zarei-Hanzaki A., Moghaddam M., Hodgson P.D., and Beladi H. Microstructural evolution and mechanical properties of accumulative back extruded duplex (α + β) brass // Mater. Characterization. 2019. V. 152. P. 101–114. https://doi.org/10.1016/j.matchar.2019.03.039
- Mikhaylovskaya A.V., Yakovtseva O.A., Tabachkova N.Yu., and Langdon T.G. Formation of ultrafine grains and twins in the β-phase during superplastic deformation of two-phase brasses // Scripta Mater. 2022. V. 218. P. 114804. https://doi.org/10.1016/j.scriptamat.2022.114804
- Кищик М.С., Кищик А.А., Мочуговский А.Г., Котов А.Д. Особенности деформационного поведения и эволюция микроструктуры свинцовой латуни лс59-1 в процессе всесторонней изотермической ковки // Металлург. 2024. № 10. С. 103–109. https://doi.org/10.52351/00260827
补充文件
