The Effect of Isothermal Multidirectional Forging on the Microstructure and Properties of Cu–40%Zn–2%Mn Alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The deformation behavior and changes in the microstructure of manganese brass Cu–40%Zn–2%Mn (wt%) during multidirectional isothermal forging (MDF) at temperatures of 400°C and 500°C, which is ~ 50°C lower and higher than the temperature of the β→β' transition, were studied. It has been shown that MDF at both temperatures promotes the formation of a homogeneous and fine-grained structure with an average grain size of α- and β'-phases of ~ 5 and ~ 12 microns, respectively, increasing the hardness by 2.5 times from 130 HV in the initial state to ~ 310 HV after the total true deformation ∑e = 7.2. An increase in the true strain to ∑e = 14.4 did not have an additional strengthening effect. In the case of MDF at 400°C, an increase in the true deformation was accompanied by a slight grinding of the grains of the α and β' phases to 3.6 and 9.2 microns, respectively, and in the case of deformation at 500°C, it led to an increase in their sizes to 7.1 and 17.5 microns, respectively.

作者简介

M. Kishchik

National University of Science and Technology MISIS, Moscow, 119049 Russia

Email: kishchik.ms@misis.ru

A. Kishchik

National University of Science and Technology MISIS, Moscow, 119049 Russia

A. Mochugovskiy

National University of Science and Technology MISIS, Moscow, 119049 Russia

V. Cheverikin

National University of Science and Technology MISIS, Moscow, 119049 Russia

A. Kotov

National University of Science and Technology MISIS, Moscow, 119049 Russia

参考

  1. Ефремов Б.Н. Латуни. От фазового строения к структуре и свойствам: Монография. Москва: ИНФРА-М, 2014. 314 с.
  2. Hussein Naser Radhi, Mohsin Talib Mohammed, and Alaa M.H. Aljassani. Influence of ECAP processing on mechanical and wear properties of brass alloy // Mater. Today: Proceedings. 2021. V. 44. Р. 2399–2402. https://doi.org/10.1016/j.matpr.2020.12.461
  3. Hussein Naser Radhi, Alaa M.H. Aljassani, and Mohsin Talib Mohammed. Effect of ECAP on microstructure, mechanical and tribological properties of aluminum and brass alloys: A review // Mater. Today: Proceedings. 2020. V. 26. Р. 2302–2307. https://doi.org/10.1016/j.matpr.2020.02.49
  4. Filippov A.V., Tarasov S.Yu, Fortuna S.V., Podgornykh O.A., Shamarin N.N., and Rubtsov V.E. Microstructural, mechanical and acoustic emission-assisted wear characterization of equal channel angular pressed (ECAP) low stacking fault energy brass // Tribology International. 2018. V. 123. Р. 273–285. https://doi.org/10.1016/j.triboint.2018.03.023
  5. Mousavi S.E., Naghshekesh N., Ahmadi F., Sadeghi B., and Cavaliere P. Effect of lead on the crack propagation and the mechanical properties of Brass processed by ECAP at different temperatures // Mater. Sci. Eng.: A. 2018. V. 728. P. 231–238. https://doi.org/10.1016/j.msea.2018.05.032
  6. Kim H.S., Kim W.Y., and Song K.H. Effect of post-heat-treatment in ECAP processed Cu-40%Zn brass // J. Alloys Compounds. Elsevier B. 2012. V. 536. P. S200–S203. https://doi.org/10.1016/j.jallcom.2011.11.079
  7. Vidilli A.L., Machado I.F., Edalati K., Botta W.J., Bolfarini C., and Koga G.Y. Wear-resistant ultrafine severely deformed brass (Cu-30Zn) // Mater. Letters. 2024. V. 377. P. 137465. https://doi.org/10.1016/j.matlet.2024.137465
  8. Azzeddine H., Baudin T., Helbert A.-L., Brisset F., Huang Y., Kawasaki M., Bradai D., and Langdon T.G. A stored energy analysis of grains with shear texture orientations in Cu-Ni-Si and Fe-Ni alloys processed by high-pressure torsion // J. Alloys Compounds. 2021. V. 864. P. 158142. https://doi.org/10.1016/j.jallcom.2020.158142
  9. Azzeddine H., Bradai D., Baudin T., and Langdon T.G. Texture evolution in high-pressure torsion processing // Progress in Mater. Sci. 2022. V. 125. P. 100886. https://doi.org/10.1016/j.pmatsci.2021.100886
  10. Panahi S., Roshan I., Diakina E., and Javid R. Effect of strain path during repeated rolling on microstructure, grain refinement, and mechanical properties of Copper/Brass multilayered composites // Mater. Today Comm. 2024. V. 40. P. 110080. https://doi.org/10.1016/j.mtcomm.2024.110080
  11. Rahmatabadi D., Shahmirzaloo A., Farahani M., Tayyebi M., and Hashemi R. Characterizing the elastic and plastic properties of the multilayered Al/Brass composite produced by ARB using DIC // Mater. Sci. Eng.: A. 2019. V. 753. P. 70–78. https://doi.org/10.1016/j.msea.2019.03.002
  12. Paseban S., and Toroghinejad M.R. Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process // Mater. Sci. Eng.: A. 2010. V. 527. P. 491–497. https://doi.org/10.1016/j.msea.2009.09.029
  13. Kishchik M. S., Kotov A.D., Demin D.O., Kishchik A.A., Aksenov S.A., and Mikhaylovskaya A.V. The Effect of Multidirectional Forging on the Deformation and Microstructure of the Al–Mg Alloy // Phys. Met. Metal. 2020. V. 121. P. 597–603. https://doi.org/10.1134/S0031918X20060071
  14. Mikhaylovskaya A.V., Kishchik M.S., Kotov A.D., and Tabachkova N.Yu. Grain refinement during isothermal multidirectional forging due to β-phase heterogenization in Al-Mg-based alloys // Mater. Letters. 2022. V. 321. P. 132412. https://doi.org/10.1016/j.matlet.2022.132412
  15. Miura H., Nakao Y., and Taku Sakai. Enhanced Grain Refinement by Mechanical Twinning in a Bulk Cu-30 mass%Zn during Multi-Directional Forging // Mater. Trans. 2007. V. 48. P. 2539–2541. https://doi.org/10.2320/matertrans.MRP2007123
  16. Shahriyari F., Shaeri M.H., Dashti A., Zarei Z., Noghani M.T., Cho J.H., and Djavanroodi F. Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging // Mater. Sci. Eng. A. 2022. V. 831. P. 142149. https://doi.org/10.1016/j.msea.2021.142149
  17. Langdon T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement // Acta Mater. 2013. V. 61. P. 7035–7059. https://doi.org/10.1016/j.actamat.2013.08.018
  18. Kishchik M.S., Mikhaylovskaya A.V., Kotov A.D., Mosleh A.O., AbuShanab W.S., and Portnoy V.K. Effect of Multidirectional Forging on the Grain Structure and Mechanical Properties of the Al–Mg–Mn Alloy // Materials. 2018. V. 11. P. 2166. https://doi.org/10.3390/ma11112166
  19. Dziubińskaa A., Gontarza A., Horzelskab K., Pieśko P. The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology // Procedia Manufacturing. 2015. V. 2. P. 337–341. https://doi.org/10.1016/j.promfg.2015.07.059
  20. Kundu A., Kapoor R., Tewari R., and Chakravartty J.K. Severe plastic deformation of copper using multiple compression in a channel die // Scripta Mater. 2008. V. 58. P. 235–238. https://doi.org/10.1016/j.scriptamat.2007.09.046
  21. Li Y.J., and Blum W. Strain rate sensitivity of Cu after severe plastic deformation by multiple compression // Phys. Stat. Sol. (A) Appl. Mater. Sci. 2005. V. 202. P. R119–R121. https://doi.org/10.1002/pssa.200521160
  22. Gupta R., Srivastava S., Kumar N.K., and Panthi S.K. High leaded tin bronze processing during multi-directional forging: Effect on microstructure and mechanical properties // Mater. Sci. Eng.: A. 2016. V. 654. P. 282–291. https://doi.org/10.1016/j.msea.2015.12.068
  23. Утяшев Ф.З., Рааб Г.И. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов. Уфа: Гилем, НИК Башк. энцикл., 2013. 376 с.
  24. Li Bing, Fu Qianqian, Yu Rongzhou, Lin Zikai, Wang Jun, Wang Xue, Guan Renguo, and Li Jiehua. Two-Phase Flow Coordination Characteristics of H62 Brass Alloy Prepared by Up-Drawing Continuous Casting // Metals. 2023. V. 13. P. 599. https://doi.org/10.3390/met13030599
  25. Kishchik M.S., Mochugovskiy A.G., Cuda M., Kishchik A.A., and Mikhaylovskaya A.V. Particle Stimulated Nucleation Effect for Al-Mg-Zr-Sc Alloys with Ni Addition during Multidirectional Forging // Metals. 2023. V. 13. P. 1–15. https://doi.org/10.3390/met13081499
  26. Liu Q., Xiong Z., Yang J., Fang L., Liu Y., Li J., Zhu X., He R., Zhu W., and Gao Z. Deformation induced phase transition in brass under shock compression // Mater. Today Comm. 2023. V. 35. P. 106224. https://doi.org/10.1016/j.mtcomm.2023.106224
  27. Wang Y.B., Liao X.Z., Zhao Y.H., Lavernia E.J., Ringer S.P., Horita Z., Langdon T.G., and Zhu Y.T. The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion // Mater. Sci. Eng.: A. 2010. V. 527. P. 4959–4966. https://doi.org/10.1016/j.msea.2010.04.036
  28. Li Y., Zhao Y.H., Liu W., Xu C., Horita Z., Liao X.Z., Zhu Y.T., Langdon T.G., and Lavernia E.J. Influence of grain size on the density of deformation twins in Cu–30%Zn alloy // Mater. Sci. Eng.: A. 2010. V. 527. P. 3942–3948. https://doi.org/10.1016/j.msea.2010.02.076
  29. Farabi E., Zarei-Hanzaki A., Moghaddam M., Hodgson P.D., and Beladi H. Microstructural evolution and mechanical properties of accumulative back extruded duplex (α + β) brass // Mater. Characterization. 2019. V. 152. P. 101–114. https://doi.org/10.1016/j.matchar.2019.03.039
  30. Mikhaylovskaya A.V., Yakovtseva O.A., Tabachkova N.Yu., and Langdon T.G. Formation of ultrafine grains and twins in the β-phase during superplastic deformation of two-phase brasses // Scripta Mater. 2022. V. 218. P. 114804. https://doi.org/10.1016/j.scriptamat.2022.114804
  31. Кищик М.С., Кищик А.А., Мочуговский А.Г., Котов А.Д. Особенности деформационного поведения и эволюция микроструктуры свинцовой латуни лс59-1 в процессе всесторонней изотермической ковки // Металлург. 2024. № 10. С. 103–109. https://doi.org/10.52351/00260827

补充文件

附件文件
动作
1. JATS XML