MORS: BLDC based small sized quadruped robot
- 作者: Budanov V.M.1, Danilov V.A.1, Kapytov D.V.1, Klimov K.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 编号 3 (2025)
- 页面: 152-176
- 栏目: РОБОТОТЕХНИКА
- URL: https://rjraap.com/0002-3388/article/view/688600
- DOI: https://doi.org/10.31857/S0002338825030146
- EDN: https://elibrary.ru/BHCUSF
- ID: 688600
如何引用文章
详细
The article describes the mechanical design, electronics and control software of the new quadruped robot MORS. The robot is intended for education and research fields. It is relatively small and lightweight and has modular design to simplify production and assembly. The robot is driven by brushless DC motors governed by the Field-Oriented Control. The trot gait is chosen as the basic one. The locomotion control algorithm is based on Zero Moment Point Preview Control method. The desired zero moment point is generated by tracking the intersection of projections of diagonally opposite legs. Software of the robotic platform is completely open sourced. To test the performance of all robot components, a number of experiments were conducted both in simulation and on the hardware platform. The experimental results demonstrate the efficiency of the robot walking in different directions with velocity up to 1.2 m/s and a load capacity of up to 7 kg, which is almost equal to its own weight.
全文:

作者简介
V. Budanov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: vldanilov90@gmail.com
Institute of Mechanics
俄罗斯联邦, MoscowV. Danilov
Lomonosov Moscow State University
Email: vldanilov90@gmail.com
Institute of Mechanics
俄罗斯联邦, MoscowD. Kapytov
Lomonosov Moscow State University
Email: vldanilov90@gmail.com
Institute of Mechanics
俄罗斯联邦, MoscowK. Klimov
Lomonosov Moscow State University
Email: vldanilov90@gmail.com
Institute of Mechanics
俄罗斯联邦, Moscow参考
- Гурфинкель В.С., Гурфинкель Е.В., Девянин Е.А., Ефремов Е.В., Жихарев Д.Н., Ленский А.В., Шнейдер А.Ю., Штильман Л.Г. Макет шестиногого шагающего аппарата с супервизорным управлением // Исследование робототехнических систем. М.: Наука, 1981.
- Гришин А.А., Житомирский С.В., Ленский А.В., Формальский А.М. Управление ходьбой двуногого пятизвенного механизма // Изв. АН. ТиСУ 1999. № 6. С. 142–152.
- Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984.
- Raibert M.H., Tello E.R. Legged Robots that Balance. Cambridge: The MIT Press, 1986. https://doi.org/10.1109/MEX.1986.4307016
- Hirose S., Umetani Y. Some Consideration on a Feasible Walking Mechanism as a Terrain Vehicle // Proc. to 3rd RoManSy Sympos. Udine: Elsevier, 1978.
- Vaughan C.L., O’Malley M.J. Froude and the Contribution of Naval Architecture to our Understanding of Bipedal Locomotion // Gait & Posture. 2005. № 21 (3). P. 350–362. https://doi.org/10.1016/j.gaitpost.2004.01.011
- Margolis G., Yang G., Paigwar K., Chen T., Agrawal P. Rapid Locomotion via Reinforcement Learning // Intern. J. Robotics Research. 2024. № 43 (4). P. 572–587. https://doi.org/10.1177/02783649231224053
- Garsia G., Griffin R., Pratt J. Time-Varying Model Predictive Control for Highly Dynamic Motions of Quadrupedal Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/ICRA48506.2021.9561913
- Park H.W., Wensing P.M., Kim S. High-speed Bounding with the MIT Cheetah 2: Control Design and Experiments // The Intern. J. Robotics Research. 2017. № 36 (2). P. 167–192. https://doi.org/10.1177/0278364917694244
- Semini C., Barasuol V., Focchi M., Boelens C., Emara M.E., Casella S. et al. Brief Introduction to the Quadruped Robot HyQReal // Intern. Conf. on Robotics and Intelligent Machines. Rome: IRIM, 2019.
- Choi S., Ji G., Park J., Kim H., Mun J., Lee J. H., Hwangbo J. Learning Quadrupedal Locomotion on Deformable Terrain // Science Robotics. 2023. V. 8. № 74. https://doi.org/ 10.1126/scirobotics.ade2256
- Rudin N., Hoeller D., Bjelonic M., Hutter M. Advanced Skills by Learning Locomotion and Local Navigation End-to-End // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2022. https://doi.org/ 10.1109/IROS47612.2022.9981198
- Sleiman J.P., Farshidian F., Minniti M.V., Hutter M. A Unified MPC Framework for Whole-Body Dynamic Locomotion // IEEE Robotics and Automation Letters. 2021. № 6. P. 4688–4695. https://doi.org/10.1109/LRA.2021.3068908
- Bjelonic M., Grandia R., Harley O., Galliard C., Zimmermann S., Hutter M. Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots // Intern. Conf. on Robotics and Automation (IROS). IEEE Press, 2021. https://doi.org/10.1109/IROS51168.2021.9636371
- Valsecchi G., Rudin N., Nachtigall L., Mayer K., Tischhauser F., Hutter M. Barry: A High-Payload and Agile Quadruped Robot // IEEE Robotics and Automation Letters. 2023. № 8(11). P. 6939–6946. https://doi.org/ 10.1109/LRA.2023.3313923
- Робот Spot фирмы Boston Dynamics. URL: https://bostondynamics.com/products/spot/
- Робот B2 фирмы Unitree. URL: https://m.unitree.com/b2/
- Робот Cyberdog фирмы Xiaomi. Unitree. URL: https://www.mi.com/global/discover/article?id=2069
- Deep Robotics: официальный сайт. URL: https://www.deeprobotics.cn/en
- Документация робота МОРС. URL: https://voltbro.gitbook.io/robot-sobaka-mors/
- Kau N., Bowers S. Stanford Pupper: A Low-Cost Agile Quadruped Robot for Benchmarking and Education // ArXiv. abs/2110.00736. 2021.
- Mudalige N.D.W., Zhura I., Babataev I., Nazarova E., Fedoseev A., Tsetserukou D. HyperDog: An Open-Source Quadruped Robot Platform Based on ROS2 and Micro-ROS // Intern. Conf. on Systems, Man, and Cybernetics (SMC). Prague, 2022. P. 436–441. http://doi: 10.1109/SMC53654.2022.9945526
- Danilov V., Diane S. CPG-Based Gait Generator for a Quadruped Robot with Sidewalk and Turning Operations. Robotics in Natural Settings // CLAWAR. Lecture Notes in Networks and Systems. 2022. № 530. P. 276–288. 2023. https://doi.org/10.1007/978–3–031–15226–9_27
- Katz B., Di Carlo J., Kim S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control // Intern. Conf. on Robotics and Automation (ICRA). Montreal: IEEE. 2019. P. 6295–6301. http://doi.org/10.1109/ICRA.2019.8793865
- Katz B.G. A Low Cost Modular Actuator for Dynamic Robots: Master Thesis. Massachusetts Institute of Technology, 2018.
- Прокол информационного обмена OpenCyphal. Официальный сайт. URL: https://opencyphal.org
- Rekioua T., Tabar F.M., Le Doeuff R. A New Approach for the Field-Oriented Control of Brushless, Synchronous, Permanent Magnet Machines // Fourth Intern. Conf. on Power Electronics and Variable-Speed Drives. № 324. London, 1990. P. 46–50.
- Bellini A., Bifaretti S., Costantini S. A Digital Speed Filter for Motion Control Drives with a Low Resolution Position Encoder // Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije. Zagreb, 2003. V. 44. № 1–2. P. 67–74.
- Dunkels A. Design and Implementation of the lwIP TCP/IP Stack. Stockholm: Swedish Institute of Computer Science, 2001. V. 2. № 77.
- Huang A.S., Olson E., Moore D.C. LCM: Lightweight Communications and Marshalling // IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems. Taipei: IEEE, 2010. P. 4057–4062.
- ПО Universal RC Joystick. URL: https://github.com/Cleric-K/Universal-RC-Joystick
- Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J. et al. ROS: An Open-Source Robot Operating System // ICRA Workshop on Open Source Software. 2009. V. 3. № 3.2. P. 5.
- Katayama T., Ohki T., Inoue T., Kato T. Design of an Optimal Controller for a Discrete-time System Subject to Previewable Demand // Intern. J. Control. 1985. V. 41. № 3. P. 677–699. https://doi.org/10.1080/0020718508961156 1985
- Kajita S., Kanehiro F., Kaneko K., Fujiwara K., Harada K., Yokoi K., Hirukawa H. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point // IEEE Intern. Conf. on Robotics and Automation. Taipei: 2003. V. 2. P. 1620–1626. https://doi.org/ 10.1109/ROBOT.2003.1241826
- Huang W., Chew C.M., Zheng Y., Hong G.S. Pattern Generation for Bipedal Walking on Slopes and Stairs // 8th IEEE-RAS Intern. Conf. on Humanoid Robots. Daejeon: IEEE, 2008. P. 205–210. https://doi.org/10.1109/ICHR.2008.4755946
- Kovalev A., Pavliuk N., Krestovnikov K., Saveliev, A.I. Generation of Walking Patterns for Biped Robots Based on Dynamics of 3D Linear Inverted Pendulum // Intern. Conf. on Interactive Collaborative Robotics. Istanbul: Springer International Publishing, 2019. P. 170–181. https://doi.org/10.1177/1729881417749672
- Akbas T., Eskimez S.E., Ozel S., Adak O.K., Fidan K.C., Erbatur K. Zero Moment Point Based Pace Reference Generation for Quadruped Robots via Preview Control // 12th IEEE Intern. Workshop on Advanced Motion Control (AMC). Sarajevo: IEEE Press, 2012. P. 1–7. https://doi.org/10.1109/AMC.2012.6197116
- Lee J.H., Park J.H. Turning Control for Quadruped Robots in Trotting on Irregular Terrain // Proc. 18th Intern. Conf. on Advances in Robotics, Mechatronics and Circuits. Santorini, 2014. P. 303–308.
- Sheridan T.B. Three Models of Preview Control // IEEE Transactions on Human Factors in Electronics. 1966. № 2. P. 91–102. https://doi.org/10.1109/THFE.1966.232329
- Физический симулятор PyBullet. Официальный сайт. URL: http://pybullet.org/
- Nishii J. An Analytical Estimation of the Energy Cost for Legged Locomotion // J. Theoretical Biology. 2006. V. 238. № 3. P. 636–645. https://doi.org/10.1016/j.jtbi.2005.06.027
补充文件
