Program control of a spacecraft with electric propulsion engines in the vicinity of an asteroid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article considers the control of the center of mass motion of a spacecraft with a low-thrust propulsion system in the vicinity of an irregularly shaped asteroid. Formation of the motion control program during mission planning is complicated by incomplete knowledge of the asteroid’s gravity. A superposition of N attractive points rotating with the asteroid’s own angular velocity at a constant distance can be used as a mathematical model of the asteroid’s gravitational potential. A preliminary study of the research object allows calculating the characteristics of such a model with two attractive centers. Software control in the vicinity of the asteroid for target maneuvers is formed on the basis of a combination of locally optimal control laws and the developed algorithm of relay switching between them with a dead zone. The developed algorithms and methods are illustrated by the results of modeling the spacecraft motion in the vicinity of the asteroid 433 Eros.

Texto integral

Acesso é fechado

Sobre autores

O. Starinova

Samara National Research University

Autor responsável pela correspondência
Email: Starinova.OL@ssau.ru
Rússia, Samara

D. Chen

Nanjing University

Email: Starinova.OL@ssau.ru
República Popular da China, Nanjing

P. Fadeenkov

Samara National Research University

Email: Starinova.OL@ssau.ru
Rússia, Samara

Bibliografia

  1. Полищук Г.М., Пичхадзе К.М. Автоматические космические аппараты для фундаментальных и прикладных научных исследований // М.: Изд-во МАИ-ПРИНТ, 2010. 659 c.
  2. Estublier D., Saccoccia G., Gonzalez J. Electric Propulsion on SMART-1// ESA Bulletin. 2007. № 129. P. 40–46.
  3. Sanctis De., Cristina M. Vesta’s Mineralogical Composition as Revealed by the Visible and Infrared Spectrometer on Dawn // Meteoritics & Planetary Science. 2013, V. 48. Iss. 11. P. 2166–2184.
  4. Accomazzo A., Lodiot S., Companys V. Rosetta Mission Operations for Landing // Acta Astronautica. 2016. V. 125. P. 30–40.
  5. Rayman M., Varghese P., Lehman D., Livesay L. Results from the Deep Space 1 Technology Validation Mission // Acta Astronautica. 2000. V. 47. Iss. 2–9. P. 475–487.
  6. Foing B., Racca G., Marini A., Evrard E., Stagnaro L., Almeida M. et al. SMART-1 Mission to the Moon: Status, First Results and Goals // Advances in Space Research. 2006. V. 37. Iss. 1. P. 6–13.
  7. Мартынов М.Б., Петухов В.Г. Концепция применения электроракетной двигательной установки в научных космических проектах: преимущества и особенности, примеры реализации // Вестн. НПО им. С.А. Лавочкина. 2011. № 2. C. 3–11.
  8. Petukhov V.G., Konstantinov M.S., Vuk V.S. Simultaneous Optimization of the Low-thrust Trajectory and the Main Design Parameters of the Spacecraft // Advances in the Astronautical Sciences. 2017. V. 161. P. 639–653.
  9. Слюта Е.Н. Форма малых тел Солнечной системы // Астрономический вестник. Исследования солнечной системы. 2014. Т. 48. № 3. 234 c.
  10. Columbi E., Anil N., Hirani B., Benjamin F., Villaс F. Structure Preserving Approximations of Conservative Forces for Application to Small-Body Dynamics // Journal of Guidance, Control and Dynamics. 2009. V. 32. № 6. P. 1847–1858.
  11. Эльясберг П.Е. Введение в теорию полета искусственных спутников Земли. М.: Наука, 1965. 540 с.
  12. Starinova O.L., Shornikov A.Y., Nikolaeva E.A. Electrospinning and Electrospraying – Techniques and Applications: Using the iESP Installed on the Space Station Moving in an Irregular Gravitational Field of the Asteroids Eros and Gaspra. London: IntechOpen Limited, 2019. Chap. 5. P. 89–107.
  13. Старинова О.Л. Расчет межпланетных перелетов космических аппаратов с малой тягой. Изд. 2-е. М.: ЛЕНАНД, 2020. 200 с.
  14. Свидетельство о государственной регистрации программы для ЭВМ: “Моделирование движения КА с ЭРДУ, предназначенных для исследования малых тел Солнечной системы”. Патент № 2022612731; 28.02.2022.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Rectangular and combined barycentric coordinate systems used to describe object-centric motion.

Baixar (56KB)
3. Fig. 2. Algorithm and calculation results: a – algorithm for calculating the parameters of the gravitational field model, b – obtained isolines of the gravitational potential of the asteroid Eros.

Baixar (225KB)
4. Fig. 3. Components of the dimensionless gravitational acceleration for the asteroid Eros: a – radial, b – transverse and normal.

Baixar (174KB)
5. Fig. 4. Algorithm for selecting the values of the control functions.

Baixar (204KB)
6. Fig. 5. Maneuver for forming a working object-centric orbit: a – control program, b – motion trajectory.

Baixar (105KB)
7. Fig. 6. Orbit maintenance (first method): a – orbit-stabilizing control, b – change in orbit radius.

Baixar (287KB)
8. Fig. 7. Orbit maintenance (second method): a – program of switching on and off the propulsion system, b – change of the orbit’s semi-major axis.

Baixar (193KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025