Quadcopter spatial motion trajectories construction and tracking

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of reference trajectories tracking for spatial motion of a quadcopter as a rigid body is considered. The state feedback linearization approach is used for synthesis of stabilizing control. The reference trajectory is constructed for three coordinates of the spatial motion of the quadcopter’s center of mass and its rotational motion along the yaw angle based on third-order polynomials depending on time, taking into account constraints on the coordinates, velocities and accelerations during the entire process of motion. The performance of the proposed control law is verified numerically and experimentally on the Parrot Mambo quadcopter model using the MATLAB/Simulink software.

Texto integral

Acesso é fechado

Sobre autores

А. Golubev

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: v-algolu@hotmail.com
Rússia, Moscow

A. Khorosheva

Moscow Institute of Physics and Technology

Email: khorohevaann@gmail.com
Rússia, Moscow

S. Vasenin

Moscow Institute of Physics and Technology

Email: stepan_vasenin@mail.ru
Rússia, Moscow

Bibliografia

  1. Madani T., Benallegue A. Backstepping Control for a Quadrotor Helicopter// IEEE/RSJ International Conf. on Intelligent Robots and Systems. Beijing, 2006. P. 3255–3260.
  2. Xu R., Ozguner U. Sliding Mode Control of a Quadrotor Helicopter // Proc. 45th IEEE Conf. on Decision and Control. San Diego, 2006. P. 4957–4962.
  3. Tartaglione G., D’Amato E., Ariola M., SalvoRossi P., Johansen T.A. Model Predictive Control for a Multi-body Slung-load System // Robot. Autonomous Syst. 2007. V. 92. P. 1–11.
  4. Adigbli P., Grand C., Mouret J.-B., Doncieux S. Nonlinear Attitude and Position Control of a Micro Quadrotor using Sliding Mode and Backstepping Techniques // 3rd US–European Competition and Workshop on Micro Air Vehicle Systems (MAV07) & European Micro Air Vehicle Conf. and Flight Competition (EMAV2007). Toulouse. France, 2007.
  5. Fang Z., Zhi Z., Jun L., Jian W. Feedback Linearization and Continuous Sliding Mode Control for a Quadrotor UAV // 27th Chinese Control Conf. Kunming. China, 2008. P. 349–353.
  6. Das A., Lewis F., Subbarao K. Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics // J. Intell. Robot. Syst. 2009.V. 56. P. 127–151.
  7. Lee D., Jin Kim H., Sastry S. Feedback Linearization vs. Adaptive Sliding Mode Control for Aquadrotor Helicopter // International J. of Control, Automation and Systems. 2009. V. 7 (3). P. 419–428.
  8. Jafari H., Zareh M., Roshanian J., Nikkhah A. An Optimal Guidance Law Applied to Quadrotor Using LQR Method // Transactions of the Japan Society for Aeronautical and Space Sciences. 2010. V. 53 (179). P. 32 – 39.
  9. Zhou Q.-L., Zhang Y., Rabbath C.-A., Theilliol D. Design of Feedback Linearization Control and Reconfigurable Control Allocation with Application to a Quadrotor UAV // Conf. on Control and Fault-Tolerant Systems. Nice. France, 2010. P. 371–376.
  10. Luukkonen T. Modelling and Control of Quadcopter. 2011. https://sal.aalto.fi/publications/pdf files/eluu11_public.pdf
  11. Mukherjee P., Waslander S. Direct Adaptive Feedback Linearization for Quadrotor Control // Control Conf., American Institute of Aeronautics and Astronautics. Minneapolis. Minnesota, 2012. https://doi.org/10.2514/6.2012-4917
  12. Пыркин А.А., Мальцева Т.А., Лабадин Д.В., Суров М.О., Бобцов А.А. Синтез системы управления квадрокоптером с использованием упрощенной математической модели // Изв. вузов. Приборостроение. 2013. Т. 56. № 4. С. 47–51.
  13. Ghandour J., Aberkane S., Ponsart J.-C. Feedback Linearization approach for Standard and Fault Tolerant Control: Application to a Quadrotor UAVTestbed // J. of Physics Conference Series. 2014. V. 570 (8) P. 082003.
  14. Gavilan F., Vazquez R., Camacho E. F. An Iterative Model Predictive Control Algorithm for UAV Guidance // IEEE Transactions on Aerospace and Electronic Systems. 2015. V. 51. P. 2406–2419.
  15. Park J., Kim Y., Kim S. Landing Site Searching and Selection Algorithm Development Using Vision System and its Application to Quadrotor // IEEE Transactions on Control Systems Technology. 2015. V. 23 (2). P. 488–503.
  16. Dolatabadi S.H., Yazdanpanah M.J. MIMO Sliding Mode and Backstepping Control for a Quadrotor UAV // 23rd Iranian Conf. on Electrical Engineering (ICEE). Tehran. Iran, 2015. P. 994–999.
  17. Choi Y.-C., Ahn H.-S. Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests // IEEE/ASME Transactions on Mechatronics. 2015. V. 20 (3). P. 1179–1192.
  18. Yao P., Wang H., Ji H. Multi-UAVs Tracking Target in Urban Environment by Model Predictive Control and Improved Grey Wolf Optimizer // Aerosp. Sci. Technol. 2016. V. 55. P. 131–143.
  19. Глазков Т.В., Голубев А.Е. Отслеживание программного изменения углового положения квадрокоптера // Математика и математическое моделирование. 2017. № 5. C. 14–28.
  20. Kurak S., Hodzic M. Control and Estimation of a Quadcopter Dynamical Model // Periodicals of Engineering and Natural Sciences. 2018. V. 6(1). P. 63–75.
  21. Glazkov T.V., Golubev A.E., Gorbunov A.V., Krishchenko A.P. Control of Quadcopter Motion in the Horizontal Plane // AIP Conference Proceedings. 2019. V. 2116. P. 380003-1–380003-4.
  22. Setyawan G.E., Kurniawan W., Gaol A.C.L. Linear Quadratic Regulator Controller (LQR) for AR. Drone’s Safe Landing // Intern. Conf. on Sustainable Information Engineering and Technology (SIET). Lombok, Indonesia, 2019. P. 228–233.
  23. Glazkov T.V., Golubev A.E. Using Simulink Support Package for Parrot Minidrones in Nonlinear Control Education // AIP Conference Proceedings. 2019. V. 2195. P. 020007-1–020007-7.
  24. Golubev A.E., Nay Thway, Gorbunov A.V., Krishchenko A.P., Utkina N.V. Construction of Quadrocopter Programmed Motion in a Flat Labyrinth // AIP Conference Proceedings. 2019. V. 2116. P. 380004-11–380004-4.
  25. Sahrir N.H., Basri A. Modelling and Manual Tuning PID Control of Quadcopter // Control, Instrumentation and Mechatronics: Theory and Practice. Lecture Notes in Electrical Engineering. V. 921. Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-3923-5_30
  26. Fliess M., Lévine J., Martin P., Rouchon P. A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems // IEEE Trans. Autom. Control. 1999. V. 44 (5). P. 922–937.
  27. Голубев А.Е. Построение программных движений механических систем с учетом ограничений при помощи многочленов третьего порядка // Изв. РАН. ТиСУ. 2021. № 2. C. 126–137.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of the program trajectory along the coordinate (solid line), including additional intermediate points.

Baixar (69KB)
3. Fig. 2. Movement of the apparatus’s center of mass along the x coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (105KB)
4. Fig. 3. The speed of movement of the center of mass along the x coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (118KB)
5. Fig. 4. Movement of the apparatus’s center of mass along the y coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (109KB)
6. Fig. 5. The speed of movement of the center of mass along the y coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (116KB)
7. Fig. 6. Movement of the apparatus’s center of mass along the z coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (100KB)
8. Fig. 7. The speed of movement of the center of mass along the z coordinate: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (118KB)
9. Fig. 8. Rotational motion along the yaw angle ψ: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (107KB)
10. Fig. 9. Angular velocity: program trajectory (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (205KB)
11. Fig. 10. Rotational motion at pitch angle θ: stabilization (dashed line) and experiment (solid line).

Baixar (139KB)
12. Fig. 11. Angular velocity: stabilization (dashed line) and experiment (solid line).

Baixar (154KB)
13. Fig. 12. Rotational motion at the bank angle φ: stabilization (dashed line) and experiment (solid line).

Baixar (127KB)
14. Fig. 13. Angular velocity: stabilization (dashed line) and experiment (solid line).

Baixar (128KB)
15. Fig. 14. The program trajectory of the motion of the center of mass of the apparatus in space (dotted line), stabilization (dashed line) and experiment (solid line).

Baixar (129KB)
16. Supplement
Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025