Method of rapprochement of a tether system with an uncontrolled space object

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of rapprochement of a tether system with an uncontrolled space object (space debris, cargo, etc.) in an almost circular near-Earth orbit is considered. The approach method is proposed, which consists in preliminary transfer of an active spacecraft to an orbit, the parameters of which are selected so that in its relative motion it moves along a trajectory close to an ellipse relative to a passive space object. Next, the tether system is deployed with a gripper device in the radial direction, and the length of the tether approximately corresponds to half of the small semi-axis of the ellipse of relative motion. After the end of the tether deployment, the entire system continues to rotate around the passive space object. In this case, there is a possibility of additional correction of the length of the tether in order to reduce the minimum distance between the gripper device and the load. To control the movement of an active spacecraft, jet engines are used, the components of the continuous thrust of which are directed along the transversal and binormal orbits. The results of end-to-end modeling in a geocentric fixed coordinate system of the considered stages of pointing the gripper device at a passive space object in the spatial case are presented, including an assessment of the impact of the gripper process on the subsequent movement of the entire system with cargo during its transportation.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Zabolotnov

Samara National Research University; Northwestern Polytechnic University

Хат алмасуға жауапты Автор.
Email: yumz@yandex.ru
Ресей, Samara; China

Changqing Wang

Northwestern Polytechnic University

Email: wangcq@nwpu.edu.cn
ҚХР, China

Zheng Min

Samara National Research University

Email: 1136032887@qq.com
Ресей, Samara

Әдебиет тізімі

  1. Williams P., Blanksby C., Trivailo P., Fujii H. A. In-plane Payload Capture Using Tethers // Acta Astronautica. 2005. V. 57, № 10. P. 772–787.
  2. Trushlyakov V., Yudintsev V. Dynamics of Rotating Tethered System for Active Debris Removal // Acta Astronautica. 2022. V. 195. P. 405–415.
  3. Zhu W., Pang Z., Si J., Gao G. Dynamics and Configuration Control of the Tethered Space Net Robot Under a Collision with High-speed Debris // Advances in Space Research. 2022. V. 70, № 5. P. 1351–1361
  4. Wang B., Meng Z., Huang P. Attitude Control of Towed Space Debris Using Only Tether // Acta Astronautica. 2017. V. 138. P. 152–167.
  5. Lu H., Li Ai., Wang Ch., Zabolotnov Yu. Impact Stabilization of Spinning Tether Systems After Nonideal Rendezvous // Spacecraft and Rockets. 2022. V. 60, № 3. P. 1–9.
  6. Aslanov V. S., Pikalov R. S., Gunchin E. R. Control of the Rendezvous of Two Spacecraft Using a Tether System // Russian Aeronautics. 2020. V. 63. № 1. P. 171–175.
  7. Sean Cl., William J. Control of Space Debris Using an Elastic Tether and Wave-Based Control // J. Guidance, Control, and Dynamics. 2016. V. 39, № 6. P. 1–15.
  8. Zhang Y., Huang P., Meng Zh., Liu Zh. Precise Angles-Only Navigation for Noncooperative Proximity Operation with Application to Tethered Space Robot // IEEE Transactions on Control Systems Technology. 2018. V. 27, № 3. P. 1139–1150.
  9. Aslanov V. S., Ledkov A. S. Survey of Tether System Technology for Space Debris Removal Missions // J. Spacecraft and Rockets. 2023. https://doi.org/10.2514/1.A35646
  10. Основы теории полета космических аппаратов / Под. ред. Г. С. Нариманова и М. К. Тихонравова. М.: Машиностроение, 1972. 608 с.
  11. Балахонцев В. Г., Иванов В. А., Шабанов В. И. Сближение в космосе. М.: Воениздат, 1973. 240 с.
  12. Ермилов Ю. А., Иванова Е. Е., Пантюшин С. В. Управление сближением космических аппаратов. М.: Наука, 1977. 448 с.
  13. Заболотнов Ю. М. Управление развертыванием орбитальной тросовой системы, состоящей из двух малых космических аппаратов // Космич. исслед. 2017. Т. 55. Вып.3. С. 236–246.
  14. Беллман Р. Динамическое программирование. М.: Изд-во иностр. лит., 1960. 400 с.
  15. Летов А. М. Динамика полета и управление. М.: Наука, 1969. 360 с.
  16. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Едиториал УРСС, 2004. 400 с.
  17. Дмитриевский А. А., Иванов Н. М., Лысенко Л. Н., Богодистов С. С. Баллистика и навигация ракет. М.: Машиностроение, 1985. 310 с.
  18. Trushlyakov V., Yudintsev V. Systems Engineering Design and Optimization of an Active Debris Removal Mission of a Spent Rocket Body Using Piggyback Autonomous Module // Advances in the Astronautical Sciences. 2017. V. 161. P. 667–681.
  19. Kruijff M. Tethers in Space. Netherlands: Delta-Utec Space Research, 2011. 423 с.
  20. Белецкий В. В., Левин Е. М. Динамика космических тросовых систем. М.: Наука, 1990. 336 с.
  21. Иванов Н. М., Лысенко Л. Н. Баллистика и навигация космических аппаратов. М.: Дрофа, 2004. 544 с.
  22. Микрин Е. А., Михайлов М. В. Ориентация, выведение, сближение и спуск космических аппаратов по измерениям от глобальных спутниковых навигационных систем. М.: Изд-во МГТУ им. Н. Э. Баумана, 2017. 357 с.
  23. Аншаков Г. П., Голяков А. Д., Петрищев В. Ф., Фурсов В. А. Автономная навигация космических аппаратов. Самара: Государственный научно-производственный ракетно-космический центр “ЦСКБ – Прогресс”, 2011. 486 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the spacecraft transition to the ellipse of its relative motion near the NCO.

Жүктеу (92KB)
3. Fig. 2. Results of modeling the spacecraft transition to an ellipse of relative motion near the NCO

Жүктеу (216KB)
4. Fig. 3. Results of modeling the transition of the spacecraft to an ellipse of relative motion near the NCO under discrete control

Жүктеу (232KB)
5. Fig. 4. Results of modeling the deployment of the spacecraft and the approach of the UZ to the NKO (1 – spacecraft, 2 – UZ)

Жүктеу (296KB)
6. Fig. 5. Results of modeling the uncontrolled movement of the KTS after the capture of the NCO

Жүктеу (175KB)
7. Fig. 6. Results of modeling the motion of the spacecraft after the capture of the NCO during its transportation using a low-thrust engine located on the spacecraft.

Жүктеу (16KB)

© Russian Academy of Sciences, 2025